Gaussian Decline Curve Analysis of Hydraulically Fractured Wells in Shale Plays: Examples from HFTS-1 (Hydraulic Fracture Test Site-1, Midland Basin, West Texas)
Abstract
:1. Introduction
- Gaussian DCA is faster than any other DCA method (only one fitting parameter—the hydraulic diffusivity); examples are given in the present study (Section 3).
- Gaussian PTA: After having established the hydraulic diffusivity for a relevant lease domain, one can apply the forward modeling mode and estimate fracture half-length (as in PTA/RTA well-test methods); examples are given in the present study (Section 4).
- Gaussian reservoir models—GRMs work with the full Gaussian solution of the pressure diffusion equation. The Gaussian solution method is closed-form and thus grid-less, arguably more accurate and faster than any of the concurrent modeling platforms used for hydraulically fractured wells. Some examples are given in the present study (Section 5).
2. State of the Art in Shale Basin Development
2.1. Advances in Global Shale Development
2.2. Limitations of Concurrent Model Solutions
2.3. Key Empirical and Theoretical Lessons Learned over the Past Decade
2.4. HFTS-1 Well Performance
3. New Method: Gaussian Decline Curve Analysis
3.1. Arps Decline Curve Analysis Method
3.2. Gaussian Decline Curve Analysis
3.3. Matches for HFTS-1 Well Rates with Gaussian DCA and Arps DCA
4. Gaussian Pressure-Transient Analysis (PTA)
4.1. Key Equations of Gaussian PTA
4.2. Gaussian PTA Results
5. Gaussian Reservoir Models (GRMs)
Probabilistic Reserves Estimations
- (1)
- Using Gaussian DCA in forward modeling mode with probabilistic inputs. For example, a probability density input function can be created from the hydraulic diffusivity-values () of Table A2.
- (2)
- Using Gaussian PTA in forward modeling mode with probabilistic inputs for the fracture half-lengths as well as the probabilistic inputs for . A probability density input function can be created from the fracture half-lengths estimated for the existing wells in the acreage (for example, as per Table 2 and Table 3 in Section 4.2).
6. Discussion
6.1. Workflow Recommendations
6.2. Strength and Weaknesses
6.3. Future Work
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. History Matches on HFTS-1 Wells
Well | bbls/Day | Fraction/Year | Well | bbls/Day | Fraction/Year | ||
---|---|---|---|---|---|---|---|
qi | Di | b | qi | Di | b | ||
3U | 2347 | 6.498 | 0.7 | 4M | 1678 | 5.029 | 0.7 |
4U | 2946 | 7.444 | 0.8 | 5M | 2619 | 11.027 | 0.9 |
5U | 3341 | 13.212 | 1.0 | 6M | 1968 | 7.978 | 0.7 |
6U | 2878 | 10.866 | 0.9 | 7M | 2880 | 10.886 | 0.9 |
7U | 2511 | 9.104 | 0.9 | 8M | 2573 | 10.954 | 0.9 |
8U | 1348 | 38.933 | 3.2 |
Well | bbls/Day | ft2/Day | m2/s | Well | bbls/Day | ft2/Day | m2/s |
---|---|---|---|---|---|---|---|
qi | α | α | qi | α | α | ||
3U | 1 | 0.0222 | 2.38 × 10−8 | 4M | 1 | 0.0225 | 2.42 × 10−8 |
4U | 1 | 0.021777 | 2.34 × 10−8 | 5M | 1 | 0.022487 | 2.42 × 10−8 |
5U | 1 | 0.022035 | 2.37 × 10−8 | 6M | 1 | 0.022843 | 2.46 × 10−8 |
6U | 1 | 0.022243 | 2.39 × 10−8 | 7M | 1 | 0.022243 | 2.39 × 10−8 |
7U | 1 | 0.0223 | 2.39 × 10−8 | 8M | 1 | 0.0224 | 2.41 × 10−8 |
8U | 1 | 0.0225 | 2.42 × 10−8 |
References
- SPE Taskforce, 2016. Final Report Unconventional Reserves Task Force, The Woodlands, TX, USA, 18–19 August 2015. Available online: https://www.spwla.org/Documents/SPWLA/TEMP/Unconventional%20Taskforce%20Final%20Report.pdf (accessed on 21 March 2020).
- Cutler, W.W., Jr. Estimation of Underground Oil Reserves by Oil-Well Production Curves; Department of the Interior, U.S. Bureau of Mines: Washington, DC, USA, 1924; p. 228.
- Arps, J.J. Analysis of Decline Curves. Trans. AIME 1945, 160, 228–247. Available online: https://www.onepetro.org/journal-paper/SPE-945228-G (accessed on 28 August 2022). [CrossRef]
- SPEE, 2010. Monograph 3. Guidelines for the Practical Evaluation of Undeveloped Reserves in Resource Pays. Society of Petroleum Evaluation Engineers. SPEE. Houston. Available online: https://spee.org/sites/spee.org/files/Monograph%203%20Errata.pdf (accessed on 28 August 2022).
- SPEE, 2016. Monograph 4. Estimating Ultimate Recovery of Developed Wells in Low‐Permeability Reservoirs. SPEE. Houston. Available online: https://www.dropbox.com/s/sd2iljfvxoxjtgw/monograph-4-errata.pdf?dl=0 (accessed on 28 August 2022).
- Weijermars, R. Production rate of multi-fractured wells modeled with Gaussian pressure transients. J. Pet. Sci. Eng. 2021, 210, 110027. [Google Scholar] [CrossRef]
- Weijermars, R.; Nandlal, K.; Tugan, M.F.; Dusterhoft, R.; Stegent, N. Hydraulic Fracture Test Site Drained Rock Volume and Recovery Factors Visualized by Scaled Complex Analysis Models: Emulating Multiple Data Sources (production rates, Water Cuts, Pressure Gauges, Flow Regime Changes; b-sigmoids). In Proceedings of the Unconventional Resources Technology Conference, URTeC 2020-2434. Austin, TX, USA, 20–22 July 2020. [Google Scholar]
- Weijermars, R.; Pham, T.; Stegent, N.; Dusterhoft, R. Hydraulic fracture propagation paths modeled using time-stepped linear superposition method (TSLM): Application to fracture treatment stages with interacting hydraulic and natural fractures at the Wolfcamp Field Test Site (HFTS). In Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium, ARMA 20-1996. Golden, CO, USA, 28 June–1 July 2020. [Google Scholar]
- Weijermars, R. Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media. Fluids 2021, 6, 379. [Google Scholar] [CrossRef]
- Weijermars, R.; Afagwu, C. Hydraulic diffusivity estimations for US shale gas reservoirs with Gaussian method: Implications for pore-scale diffusion processes in underground repositories. J. Nat. Gas Sci. Eng. 2022, 106, 104682. [Google Scholar] [CrossRef]
- Rogner, H.-H. An Assessment of World Hydrocarbon Resources. Annu. Rev. Energy Environ. 1997, 22, 217–262. [Google Scholar] [CrossRef]
- Jennings, G.L.; Greaves, K.H.; Bereskin, S.R. Natural gas resource potential of the Lewis Shale, San Juan Basin, New Mexico and Colorado. In Proceedings of the International Coalbed Methane Symposium; The University of Alabama: Tuscaloosa, AL, USA, 1997; Paper 9766; pp. 557–564. [Google Scholar]
- Rogner, H.-H.; Weijermars, R. The uncertainty of future commercial shale gas availability. In Proceedings of the SPE/EAGE European Unconventional Conference and Exhibition, Vienna, Austria, 25–27 February 2014; SPE-167710-MS. pp. 1–11. [Google Scholar] [CrossRef]
- Ostera, H.A.; García, R.; Malizia, D.; Kokot, P.; Wainstein, L.; Ricciutti, M. Shale gas plays, Neuquén Basin, Argentina: Chemostratigraphy and mud gas carbon isotopes insights. Braz. J. Geol. 2016, 46 (Suppl. S1), 181–196. Available online: https://www.scielo.br/j/bjgeo/a/QPV39XRCD9WbT5dhMH8GCQQ/?format=pdf&lang=en (accessed on 28 August 2022). [CrossRef]
- Tagarot-Seadi, G.; Vicente, M.; Luongo, S.A. Historical Production Analysis of Vaca Muerta Formation in the Neuquén Basin: A Guide to Understand the Past, Present and Future. Presented at the SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 17–19 May 2017. [Google Scholar] [CrossRef]
- Weijermars, R.; Jin, M.; Khamidy, N.I. Workflow for Probabilistic Resource Estimation: Jafurah Basin Case Study (Saudi Arabia). Energies 2021, 14, 8036. [Google Scholar] [CrossRef]
- Jin, M.; Weijermars, R. Economic Appraisal for an Unconventional Condensate Play Prior to Field Development: Jafurah Basin Case Study (Saudi Arabia). J. Nat. Gas Sci. Eng. 2022, 103, 104605. [Google Scholar] [CrossRef]
- Li, S.-Z.; Zhou, Z.; Nie, H.-K.; Zhang, L.-F.; Song, T.; Liu, W.-B.; Li, H.H.; Xu, Q.-C.; Wei, S.-Y.; Tao, S. Distribution characteristics, exploration and development, geological theories research progress and exploration directions of shale gas in China. China Geol. 2022, 5, 110–135. [Google Scholar] [CrossRef]
- Chen, B.; Barbosa, B.R.; Sun, Y.; Bai, J.; Thomas, H.R.; Dutko, M.; Cottrell, M.; Li, C. A Review of Hydraulic Fracturing Simulation. Arch. Comput. Methods Eng. 2021, 29, 1–58. [Google Scholar] [CrossRef]
- Wang, J.; Weijermars, R. Stress anisotropy changes near hydraulically fractured wells due to production-induced pressure-depletion. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, KSA ARMA-IGS-21-109. Dhahran, Saudi Arabia, 1–4 November 2021. [Google Scholar]
- Waters, D.; Weijermars, R. Predicting the Performance of Undeveloped Multi-Fractured Marcellus Gas Wells Using an Analytical Flow-Cell Model (FCM). Energies 2021, 14, 1734. [Google Scholar] [CrossRef]
- Tugan, M.F.; Weijermars, R. 2021. Searching for the Root Cause of Shale Well-Rate Variance: Highly Variable Fracture Treatment Response. J. Pet. Sci. Eng. 2021, 210, 109919. [Google Scholar] [CrossRef]
- Nandlal, A.; Weijermars, R. Shale Well Factory Model Reviewed: Eagle Ford Case Study. J. Pet. Sci. Eng. 2022, 212, 110158. [Google Scholar] [CrossRef]
- Weijermars, R. Optimization of Fracture Spacing and Well Spacing in Utica Shale Play Using Fast Analytical Flow-Cell Solutions Calibrated with Numerical Reservoir Simulator. Energies 2020, 13, 6736. [Google Scholar] [CrossRef]
- Weijermars, R.; Nandlal, K.; Khanal, A.; Tugan, M.F. Comparison of Pressure Front with Tracer Front Advance and Principal Flow Regimes in Hydraulically Fractured Wells in Unconventional Reservoirs. J. Pet. Sci. Eng. 2019, 183, 106407. [Google Scholar] [CrossRef]
- Weijermars, R.; Tugan, M.F.; Khanal, A. Production Rates and EUR Forecasts for Interfering Parent-Parent Wells and Parent-Child Wells: Fast Analytical Solutions and Validation with Numerical Reservoir Simulators. J. Pet. Sci. Eng. 2020, 190, 107032. [Google Scholar] [CrossRef]
- Weijermars, R.; Nandlal, K. Pre-Drilling Production Forecasting of Parent and Child Wells Using a 2-Segment DCA Method Based on an Analytical Flow-Cell Model Scaled by a Single Type Well. Energies 2020, 13, 1525. [Google Scholar] [CrossRef]
- Zhao, Y.; Bessa, F.; Sahni, V.; Pudugramam, S.; Liu, S. Key Learnings from Hydraulic Fracturing Test Site-2 (HFTS-2), Delaware Basin. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, TX, USA, 26–28 July 2021. [Google Scholar] [CrossRef]
- Hu, Y.; Weijermars, R.; Zuo, L.; Yu, W. Benchmarking EUR Estimates for Hydraulically Fractured Wells with and without Fracture Hits Using Various DCA Methods. J. Pet. Sci. Eng. 2018, 162, 617–632. [Google Scholar] [CrossRef]
- Manda, P.; Nkazi, D.B. The Evaluation and Sensitivity of Decline Curve Modelling. Energies 2020, 13, 2765. [Google Scholar] [CrossRef]
- Alarifi, S.A. Production data analysis of hydraulically fractured horizontal wells from different shale formations. Appl. Sci. 2021, 11, 2165. [Google Scholar] [CrossRef]
- Weijermars, R.; Johnson, A.; Denman, J.; Salinas, K.; Williams, J. Creditworthiness of North American Oil Companies and Minsky Effects of the (2014-2016) Oil Price Shock. J. Financ. Account. 2018, 6, 162–180. [Google Scholar] [CrossRef]
Reservoir Attribute | Unit | Value |
---|---|---|
Initial Pressure UWF | psi | 4073 |
Initial Pressure MWF | psi | 4250 |
Bottomhole pressure | psi | 500 |
Porosity | none | 0.06 |
Permeability | Darcy | 5.0 × 10−7 |
Viscosity | cPoise | 0.6 |
Payzone height | ft | 100 |
Formation volume factor | bbl/stb | 1.4186 |
Unit | Well Number→ | 8U | 7U | 6U | 5U | 4U | 3U |
---|---|---|---|---|---|---|---|
Darcy | Permeability | 5.0 × 10−7 | 5. 0 × 10-−7 | 5.0 × 10−7 | 5.0 × 10−7 | 5.0 × 10−7 | 5.0 × 10−7 |
ft2/day | Diffusivity | 0.0225 | 0.0223 | 0.022243 | 0.022035 | 0.021777 | 0.0222 |
m2/s | Diffusivity | 2.42 × 10−8 | 2.39 × 10−8 | 2.39 × 10−8 | 2.37 × 10−8 | 2.34 × 10−8 | 2.38 × 10−8 |
ft | Height | 100 | 100 | 100 | 100 | 100 | 100 |
ft | 2Wf | 816 | 788 | 1062 | 1167 | 802 | 1102 |
ft | Wf | 408 | 394 | 531 | 583 | 401 | 551 |
Clusters | Fractures | 113 | 149 | 113 | 113 | 186 | 113 |
Unit | Well Number→ | 8M | 7M | 6M | 5M | 4M |
---|---|---|---|---|---|---|
Darcy | Permeability | 5. 0 × 10−7 | 5.0 × 10−7 | 5.0 × 10−7 | 5.0 × 10−7 | 5.0 × 10−7 |
ft2/day | Diffusivity | 0.0224 | 0.022243 | 0.022843 | 0.022487 | 0.0225 |
m2/s | Diffusivity | 2.41 × 10−8 | 2.39 × 10−8 | 2.46 × 10−8 | 2.42 × 10−8 | 2.42 × 10−8 |
ft | Height | 100 | 100 | 100 | 100 | 100 |
ft | 2Wf | 947 | 625 | 776 | 900 | 557 |
ft | Wf | 473 | 313 | 388 | 450 | 279 |
Clusters | Fractures | 113 | 183 | 113 | 113 | 185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weijermars, R. Gaussian Decline Curve Analysis of Hydraulically Fractured Wells in Shale Plays: Examples from HFTS-1 (Hydraulic Fracture Test Site-1, Midland Basin, West Texas). Energies 2022, 15, 6433. https://doi.org/10.3390/en15176433
Weijermars R. Gaussian Decline Curve Analysis of Hydraulically Fractured Wells in Shale Plays: Examples from HFTS-1 (Hydraulic Fracture Test Site-1, Midland Basin, West Texas). Energies. 2022; 15(17):6433. https://doi.org/10.3390/en15176433
Chicago/Turabian StyleWeijermars, Ruud. 2022. "Gaussian Decline Curve Analysis of Hydraulically Fractured Wells in Shale Plays: Examples from HFTS-1 (Hydraulic Fracture Test Site-1, Midland Basin, West Texas)" Energies 15, no. 17: 6433. https://doi.org/10.3390/en15176433
APA StyleWeijermars, R. (2022). Gaussian Decline Curve Analysis of Hydraulically Fractured Wells in Shale Plays: Examples from HFTS-1 (Hydraulic Fracture Test Site-1, Midland Basin, West Texas). Energies, 15(17), 6433. https://doi.org/10.3390/en15176433