Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations
Abstract
:1. Introduction
2. Materials and Methods
3. Analysis of the Results
- j—the harmful compound for which the conformity factor was specified,
- ERDE,j—road emission obtained under real driving conditions ([g/kWh])
- Enorm,j—value of emission limit in the applicable emission standard ([g/kWh])
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houghton, J. Global Warming: The Complete Briefing; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Spentzas, K.N.; Mamali, A.A. The impact of automotive industry and its supply chain to climate change: Somme techno-economic aspects. Eur. Transp. Res. Rev. 2013, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Räisänen, J.; Hansson, U.; Ullerstig, A.; Döscher, R.; Graham, L.P.; Jones, C.; Meier, H.E.; Samuelsson, P.; Willén, U. European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios. Clim. Dyn. 2004, 22, 13–31. [Google Scholar] [CrossRef]
- World Health Organization Website. Available online: http://www.who.com (accessed on 22 March 2021).
- World Energy Council. World Energy Resources; World Energy Council: London, UK, 2016. [Google Scholar]
- European Environment Agency. European Union Emission Inventory Report 1990–2016; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- European Environment Agency. Greenhouse Gas Emissions from Transport in Europe; European Environment Agency: Copenhagen, Denmark, 2019.
- Hao, H.; Geng, Y.; Sarkis, J. Carbon footprint of global passenger cars: Scenarios through 2050. Energy 2016, 101, 121–131. [Google Scholar] [CrossRef]
- Delucchi, M. Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, from the Use of Alternative Transportation Modes and Fuels; University of California Transportation Center: Berkeley, CA, USA, 1996. [Google Scholar]
- Kim, N.S.; Van Wee, B. Assessment of CO2 emissions for truck-only and rail-based intermodal freight systems in Europe. Transp. Plan. Technol. 2009, 32, 313–333. [Google Scholar] [CrossRef]
- Matei, M.C.; Nes, C.S. Extensive use of the railway system-an efficient way of reducing CO2 emissions in the transportation sector. J. Environ. Prot. Ecol. 2012, 13, 844–851. [Google Scholar]
- Givoni, M.; Brand, C.; Watkiss, P. Are railways climate friendly? Built Environ. 2009, 35, 70–86. [Google Scholar] [CrossRef]
- Casadei, S.; Maggioni, A. Performance Testing of a Locomotive Engine Aftertreatment Pre-prototype in a Passenger Cars Chassis Dynamometer Laboratory. Transp. Res. Procedia 2016, 14, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Graver, B.M.; Frey, H.C.; Hu, J. Effect of biodiesel fuels on real-world emissions of passenger locomotives. Environ. Sci. Technol. 2016, 50, 12030–12039. [Google Scholar] [CrossRef]
- Lebedevas, S.; Pukalskas, S.; Žaglinskis, J.; Matijošius, J. Comparative investigations into energetic and ecological parameters of camelina-based biofuel used in the 1Z diesel engine. Transport 2012, 27, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, A.; Žaglinskis, J.; Stravinskas, S.; Rapalis, P.; Matijošius, J.; Bereczky, Á. Research on the combustion, energy and emission parameters of various concentration blends of hydrotreated vegetable oil biofuel and diesel fuel in a compression-ignition engine. Energies 2019, 12, 2978. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Frey, H.C. Comparison of real-world and certification emission rates for light duty gasoline vehicles. Sci. Total Environ. 2018, 622, 790–800. [Google Scholar] [CrossRef]
- Pathak, S.K.; Sood, V.; Singh, Y.; Channiwala, S.A. Real world vehicle emissions: Their correlation with driving parameters. Transp. Res. Part D Transp. Environ. 2016, 44, 157–176. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J.; Bielaczyc, P.; Woodburn, J. Analysis of emission factors in RDE tests as well as in NEDC and WLTC chassis dynamometer tests. In SAE Technical Papers; SAE Technical Paper No. 2016-01-0980; SAE International: Pittsburgh, PA, USA, 2016. [Google Scholar] [CrossRef]
- O’Driscoll, R.; Stettler, M.E.; Molden, N.; Oxley, T.; ApSimon, H.M. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Sci. Total Environ. 2018, 621, 282–290. [Google Scholar] [CrossRef]
- Schroeder, F.; Breuer, B.; Preiss, H.; Weidhaas, G. Motorcycle noise and exhaust emissions-statutory testing methods versus real traffic situations. In Proceedings of the 1999 SAE Small Engine Technology Conference-P-348, Madison, WI, USA, 28–30 September 1999. SAE Technical Paper No. 1999-01-3255. [Google Scholar] [CrossRef]
- Thomas, D.; Li, H.; Wang, X.; Song, B.; Ge, Y.; Yu, W.; Ropkins, K. Comparison of Tailpipe Gaseous Emissions for RDE and WLTC Using SI Passenger Cars. In Proceedings of the SAE Powertrain Fuels and Lubricants Meeting, Beijing, China, 30 October 2017. SAE Technical Paper No. 2017-01–2391. [Google Scholar] [CrossRef]
- Tsai, J.H.; Chiang, H.L.; Hsu, Y.C.; Peng, B.J.; Hung, R.F. Development of a local real world driving cycle for motorcycles for emission factor measurements. Atmos. Environ. 2005, 39, 6631–6641. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Zhou, Y.; Li, Z.; Wang, Y.; Zhang, S.; Hao, J. Real-world emissions of gasoline passenger cars in Macao and their correlation with driving conditions. Int. J. Environ. Sci. Technol. 2014, 11, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Wu, B.; Wu, Y.; Cao, X.; Jiang, X. Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements. Atmos. Environ. 2015, 123, 1–8. [Google Scholar] [CrossRef]
- Al-Samari, A. Study of emissions and fuel economy for parallel hybrid versus conventional vehicles on real world and standard driving cycles. Alex. Eng. J. 2017, 56, 721–726. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, S.; Wu, Y.; Ke, W.; He, X.; Hao, J. Energy-saving benefits from plug-in hybrid electric vehicles: Perspectives based on real-world measurements. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 735–756. [Google Scholar] [CrossRef]
- Lijewski, P.; Merkisz, J.; Fuć, P. Research of exhaust emissions from a harvester diesel engine with the use of portable emission measurement system. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2013, 34, 113–122. [Google Scholar]
- Lijewski, P.; Merkisz, J.; Fuć, P.; Ziółkowski, A.; Rymaniak, Ł.; Kusiak, W. Fuel consumption and exhaust emissions in the process of mechanized timber extraction and transport. Eur. J. For. Res. 2017, 136, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Ge, Y.; Tan, J.; Fu, M.; Wang, X.; Chen, M.; Lu, Y.; Wu, Y. Real-world emission from in-use construction equipment in China. Aerosol Air Qual. Res. 2016, 16, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Bergin, M.S.; Harrell, M.; Janssen, M. Locomotive emission inventories for the United States from ERTAC Rail. In Proceedings of the Annual International Emission Inventory Conference, Tampa, FL, USA, 13 August 2012; pp. 13–16. [Google Scholar]
- Tang, N.W.; Apte, J.S.; Martien, P.T.; Kirchstetter, T.W. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives. California. Atmos. Environ. 2015, 115, 295–303. [Google Scholar] [CrossRef]
- Johnson, G.R.; Jayaratne, E.R.; Lau, J.; Thomas, V.; Juwono, A.M.; Kitchen, B.; Morawska, L. Remote measurement of diesel locomotive emission factors and particle size distributions. Atmos. Environ. 2013, 81, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Krasowsky, T.; Daher, N.; Sioutas, C.; Ban-Weiss, G. Measurement of particulate matter emissions from in-use locomotives. Atmos. Environ. 2015, 113, 187–196. [Google Scholar] [CrossRef]
- Sawant, A.A.; Nigam, A.; Miller, J.W.; Johnson, K.C.; Cocker, D.R. Regulated and non-regulated emissions from in-use diesel-electric switching locomotives. Environ. Sci. Technol. 2007, 41, 6074–6083. [Google Scholar] [CrossRef] [PubMed]
- Frey, H.C.; Choi, H.W.; Kim, K. Measurement of the energy use and emissions of passenger rail locomotives using a portable emission measurement system. In Proceedings of the 102nd Annual Conference and Exhibition Air and Waste Management Association, Detroit, MI, USA, 16–19 June 2009. [Google Scholar]
- Frey, H.C.; Choi, H.W.; Kim, K. Portable emission measurement system for emissions of passenger rail locomotives. Transp. Res. Rec. 2012, 2289, 56–63. [Google Scholar] [CrossRef]
- Brabb, D.C.; Vithani, A.R.; Punwani, S.K. Onboard Locomotive Exhaust Emissions Measurement. In Proceedings of the ASME Rail Transportation Division Fall Technical Conference, Chicago, IL, USA, 11–12 September 2007; Volume 48000, pp. 69–75. [Google Scholar]
- Graver, B.M.; Frey, H.C. Comparison of locomotive emissions measured during dynamometer versus rail yard engine load tests. Transp. Res. Rec. 2013, 2341, 23–33. [Google Scholar] [CrossRef]
- Graver, B.M.; Frey, H.C. Comparison of over-the-rail and rail yard measurements of diesel locomotives. Environ. Sci. Technol. 2015, 49, 13031–13039. [Google Scholar] [CrossRef] [PubMed]
- Graver, B.M.; Frey, H.C. Highway vehicle emissions avoided by diesel passenger rail service based on real-world data. Urban Rail Transit 2016, 2, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Vojtisek-Lom, M.; Jirků, J.; Pechout, M. Real-World Exhaust Emissions of Diesel Locomotives and Motorized Railcars during Scheduled Passenger Train Runs on Czech Railroads. Atmosphere 2020, 11, 582. [Google Scholar] [CrossRef]
- Kim, M.K.; Park, D.; Kim, M.; Heo, J.; Park, S.; Chong, H. A study on characteristic emission factors of exhaust gas from diesel locomotives. International. J. Environ. Res. Public Health 2020, 17, 3788. [Google Scholar] [CrossRef]
- Report on the Functioning of the Rail Transport Market in 2019 r; Office of Technical Inspection Report; Polish Office of Rail Transport: Warsaw, Poland, 2019.
- Fuc, P.; Lijewski, P.; Ziolkowski, A.; Dobrzynski, M. Development of a method of calculation of energy balance in exhaust systems in terms of energy recovery. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; Volume 8, p. V008T10A047. [Google Scholar]
- Lijewski, P.; Merkisz, J.; Fuc, P. The analysis of the operating conditions of farm machinery engines in regard to exhaust emissions legislation. Appl. Eng. Agric. 2013, 29, 445–452. [Google Scholar]
- Merkisz, J.; Fuć, P.; Lijewski, P. Reduction of NOx emission from diesel engines by the application of ceramic oxygen conductors. In Urban Transport and the Environment in the 21st Century; WIT Press: Boston, MA, USA, 2008; pp. 355–367. [Google Scholar]
- Tkaczyk, M.; Sroka, Z.J.; Krakowian, K.; Wlostowski, R. Experimental Study of the Effect of Fuel Catalytic Additive on Specific Fuel Consumption and Exhaust Emissions in Diesel Engine. Energies 2021, 14, 54. [Google Scholar] [CrossRef]
- Gis, W.; Pielecha, J.; Waśkiewicz, J.; Gis, M.; Menes, M. Use of certain alternative fuels in road transport in Poland. Iop Conf. Ser. Mater. Sci. Eng. 2016, 148, 012040. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies 2020, 13, 6709. [Google Scholar] [CrossRef]
- Szymlet, N.; Lijewski, P.; Kurc, B. Road Tests of a Two-Wheeled Vehicle with the Use of Various Urban Road Infrastructure Solutions. J. Ecol. Eng. 2020, 21, 152–159. [Google Scholar] [CrossRef]
- Rymaniak, Ł.; Lijewski, P.; Kamińska, M.; Fuć, P.; Kurc, B.; Siedlecki, M.; Kalociński, T.; Jagielski, A. The role of real power output from farm tractor engines in determining their environmental performance in actual operating conditions. Comput. Electron. Agric. 2020, 173, 105405. [Google Scholar] [CrossRef]
- Merkisz, J.; Gallas, D.; Siedlecki, M.; Szymlet, N.; Sokolnicka, B. Exhaust emissions of an LPG powered vehicle in real operating conditions. In Proceedings of the E3s Web Conference, 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2019, Polanica Zdrój, Poland, 8–10 April 2019; Volume 100, p. 00053. [Google Scholar] [CrossRef] [Green Version]
- Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Weymann, S. The use of the PEMS equipment for the assessment of farm fieldwork energy consumption. Appl. Eng. Agric. 2015, 31, 875–879. [Google Scholar]
- Lijewski, P.; Fuc, P.; Dobrzynski, M.; Markiewicz, F. Exhaust emissions from small engines in handheld devices. In Proceedings of the Matec Web Conference, VII International Congress on Combustion Engines, Poznan, Poland, 27–29 June 2017; Volume 118, p. 00016. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B. Solid particle number emission factors of Euro VI heavy-duty vehicles on the road and in the laboratory. Int. J. Environ. Res. Public Health 2018, 15, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkisz, J.; Bielaczyc, P.; Pielecha, J.; Woodburn, J. RDE testing of passenger cars: The effect of the cold start on the emissions results. In SAE Technical Papers; SAE International: Pittsburgh, PA, USA, 2019. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Galassi, C. Emission Factors for New and Upcoming Technologies in Road Transport; EU Report EUR 26952; Institute of Energy and Transport: Ispra, Italy, 2014. [Google Scholar]
- Triantafyllopoulos, G.; Katsaounis, D.; Karamitros, D.; Ntziachristos, L.; Samaras, Z. Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 Real Drive Emissions (RDE) compliance. Sci. Total Environ. 2018, 618, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Valverde, V.; Giechaskiel, B.; Carriero, M. Real Driving Emissions: 2018–2019 Assessment of Portable Emissions Measurement Systems (PEMS) Measurement Uncertainty; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Information Site. Available online: http://www.geoforum.pl (accessed on 15 July 2020).
Parameter | Track Geometry Vehicle | Clearance Vehicle |
Type of engine | diesel | diesel |
Number of cylinders and valves per cylinder | 12 4 | 6 2 |
Cylinder capacity | 32.1 dm3 | 7.15 dm3 |
Diameter per stroke | 144 mm × 162 mm | 108 mm × 130 mm |
Maximum power at engine speed | 950 kW 1800 rpm | 141 kW 2300 rpm |
Maximum torque at engine speed | 5345 Nm 1350 rpm | 702 Nm 1400 rpm |
Emission standard | Stage IIIB | Stage II |
Vehicle weight | 40 t | 36.1 t |
Maximum speed | 140 km/h | 90 km/h |
Aspiration | turbocharger | turbocharger |
Injection system | direct | direct |
Injector type | Electronic Unit Injector (EUI) | Unit Injector (UI) |
Exhaust Component | Measurement Range | Relative Measurement Accuracy | Distribution | Method of Measurement |
---|---|---|---|---|
HC | 0–4000 ppm | ±3% | 1 ppm | NDIR |
CO | 0–10% | ±3% | 0.01 vol.% | NDIR |
CO2 | 0–16% | ±4% | 0.01 vol.% | NDIR |
NO | 0–4000 ppm | ±3% | 1 ppm | E-chem |
O2 | 0–25% | ±3% | 0.01 vol.% | E-chem |
PM | 0–300 mg/m3 | ± 2% | 0.01 mg/m3 | Laser Scatter |
Parameter | Diagnostic Vehicle | Track Geometry Vehicle |
---|---|---|
Distance [km] | 74.2 | 37 |
Maximum speed [km/h] | 126.8 | 68.4 |
Average speed [km/h] | 65.9 | 45.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamińska, M.; Rymaniak, Ł.; Lijewski, P.; Szymlet, N.; Daszkiewicz, P.; Grzeszczyk, R. Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations. Energies 2021, 14, 3141. https://doi.org/10.3390/en14113141
Kamińska M, Rymaniak Ł, Lijewski P, Szymlet N, Daszkiewicz P, Grzeszczyk R. Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations. Energies. 2021; 14(11):3141. https://doi.org/10.3390/en14113141
Chicago/Turabian StyleKamińska, Michalina, Łukasz Rymaniak, Piotr Lijewski, Natalia Szymlet, Paweł Daszkiewicz, and Rafał Grzeszczyk. 2021. "Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations" Energies 14, no. 11: 3141. https://doi.org/10.3390/en14113141
APA StyleKamińska, M., Rymaniak, Ł., Lijewski, P., Szymlet, N., Daszkiewicz, P., & Grzeszczyk, R. (2021). Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations. Energies, 14(11), 3141. https://doi.org/10.3390/en14113141