Parametric Investigation of a Ground Source CO2 Heat Pump for Space Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Examined Geothermal-Based Unit
2.2. Mathematical Formulation
2.2.1. Heat Pump Modeling
2.2.2. Heat Transfer in the Evaporator
2.2.3. Geothermal Field Modeling
2.3. Validation of the Developed Model
3. Results and Discussion
3.1. Investigation of the Default Scenario
3.2. Parametric Investigation
3.2.1. Heat Pump Parameters
3.2.2. Geothermal Field Parameters
3.3. Discussion of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
b0 | Zero-order parameter of Equation (22) |
b1 | First-order parameter of Equation (22) |
cp,f | Geothermal fluid specific heat capacity, kJ/kgK |
din | U-tube inner diameter, m |
dout | U-tube outer diameter, m |
dp | Borehole diameter, m |
h | Specific enthalpy of the CO2, kJ/kg |
hf | Heat convection coefficient between geothermal fluid and U-tube, W/m2K |
k | Thermal conductivity, W/mK |
Lbore | Borehole length, m |
Mass flow rate of all the geothermal fluid, kg/s | |
Mass flow rate of the geothermal fluid in one borehole, kg/s | |
Refrigerant (CO2) mass flow rate, kg/s | |
N | Number of the boreholes |
Nu | Nusselt number |
Pel | Electricity consumption in the compressor, kW |
Prf | Geothermal fluid Prandtl number |
p | Pressure, bar |
plow | Low pressure in the heat pump, bar |
phigh | High pressure in the heat pump, bar |
Qe | Heat input in the evaporator from the geothermal field, kW |
Qheat | Heating production, kW |
Qout | Heat rejection from the gas cooler to the ambient, kW |
Rfilm | Fluid film thermal resistance per length, mK/W |
Rgrt | Grout thermal resistance per length, mK/W |
Rov | Overall thermal resistance per length, mK/W |
Rp | Thermal resistance of the heat exchanger per length, mK/W |
Rtube | Thermal resistance of the tube per length, mK/W |
Re | Reynolds number |
s | Specific entropy of the CO2, kJ/kg |
T | Temperature, °C |
Tg | Ground temperature, °C |
(UA)e | Total thermal transmittance of the evaporator, W/K |
Vf | Geothermal fluid volumetric flow rate, L/s |
Greek Symbols | |
ΔΤlm | Mean logarithmic difference, K |
ηcomp | Compressor global efficiency |
ηHEX | Heat exchanger effectiveness |
μf | Fluid dynamic viscosity, Pa s |
ρf | Density, kg/m3 |
Subscripts and Superscripts | |
e | Evaporator |
e,in | Evaporator inlet |
e,out | Evaporator outlet |
f | Geothermal fluid |
f,m | Mean geothermal fluid |
max | Maximum |
min | Minimum |
grt | Grout |
Abbreviations | |
COP | Coefficient of Performance |
References
- Garavaso, P.; Bignucolo, F.; Vivian, J.; Alessio, G.; de Carli, M. Optimal Planning and Operation of a Residential Energy Community under Shared Electricity Incentives. Energies 2021, 14, 2045. [Google Scholar] [CrossRef]
- Dallapiccola, M.; Barchi, G.; Adami, J.; Moser, D. The Role of Flexibility in Photovoltaic and Battery Optimal Sizing towards a Decarbonized Residential Sector. Energies 2021, 14, 2326. [Google Scholar] [CrossRef]
- Fatima, S.; Püvi, V.; Arshad, A.; Pourakbari-Kasmaei, M.; Lehtonen, M. Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks. Energies 2021, 14, 2405. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Energetic and financial sustainability of solar assisted heat pump heating systems in Europe. Sustain. Cities Soc. 2017, 33, 70–84. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Performance analysis and optimization of an absorption chiller driven by nanofluid based solar flat plate collector. J. Clean. Prod. 2018, 174, 256–272. [Google Scholar] [CrossRef]
- Lebbihiat, N.; Atia, A.; Arıcı, M.; Meneceur, N. Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. J. Clean. Prod. 2021, 302, 126950. [Google Scholar] [CrossRef]
- Chu, Z.; Dong, K.; Gao, P.; Wang, Y.; Sun, Q. Mine-oriented low-enthalpy geothermal exploitation: A review from spatio-temporal perspective. Energy Convers. Manag. 2021, 237, 114123. [Google Scholar] [CrossRef]
- Sanner, B.; Karytsas, C.; Mendrinos, D.; Rybach, L. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 2003, 32, 579–588. [Google Scholar] [CrossRef]
- Karytsas, C. Current state of the art of geothermal heat pumps as applied to buildings. Adv. Build. Energy Res. 2012, 6, 119–140. [Google Scholar] [CrossRef]
- Michopoulos, A.; Zachariadis, T.; Kyriakis, N. Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger. Energy 2013, 51, 349–357. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Sun, D.; Wang, G. Municipal space heating using a ground source absorption heat pump driven by an urban heating system. Geothermics 2019, 78, 224–232. [Google Scholar] [CrossRef]
- Emmi, G.; Zarrella, A.; de Carli, M.; Galgaro, A. An analysis of solar assisted ground source heat pumps in cold climates. Energy Convers. Manag. 2015, 106, 660–675. [Google Scholar] [CrossRef]
- Sakellariou, E.I.; Wright, A.J.; Axaopoulos, P.; Oyinlola, M.A. PVT based solar assisted ground source heat pump system: Modelling approach and sensitivity analyses. Sol. Energy 2019, 193, 37–50. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006; European Commission: Brussels, Belgium; Luxembourg, 2014. [Google Scholar]
- Bellos, E.; Tzivanidis, C. A Theoretical Comparative Study of CO2 Cascade Refrigeration Systems. Appl. Sci. 2019, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Bellos, E.; Tzivanidis, C. Parametric Analysis of a Polygeneration System with CO2 Working Fluid. Appl. Sci. 2021, 11, 3215. [Google Scholar] [CrossRef]
- Kim, W.; Choi, J.; Cho, H. Performance analysis of hybrid solar-geothermal CO2 heat pump system for residential heating. Renew. Energy 2013, 50, 596–604. [Google Scholar] [CrossRef]
- Eslami-Nejad, P.; Badache, M.; Bastani, A.; Aidoun, Z. Detailed Theoretical Characterization of a Transcritical CO2 Direct Expansion Ground Source Heat Pump Water Heater. Energies 2018, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Molina-Giraldo, N.; Bayer, P.; Blum, P. Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int. J. Therm. Sci. 2011, 50, 1223–1231. [Google Scholar] [CrossRef]
- Piga, B.; Casasso, A.; Pace, F.; Godio, A.; Sethi, R. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies 2017, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- Antelmi, M.; Alberti, L.; Barbieri, S.; Panday, S. Simulation of thermal perturbation in groundwater caused by Borehole Heat Exchangers using an adapted CLN package of MODFLOW-USG. J. Hydrol. 2021, 596, 126106. [Google Scholar] [CrossRef]
- Antelmi, M.; Alberti, L.; Angelotti, A.; Curnis, S.; Zille, A.; Colombo, L. Thermal and hydrogeological aquifers characterization by coupling depth-resolved thermal response test with moving line source analysis. Energy Convers. Manag. 2020, 225, 113400. [Google Scholar] [CrossRef]
- F-Chart Software, Engineering Equation Solver (EES). 2015. Available online: http://www.fchart.com/ees (accessed on 1 February 2021).
- Kavanaugh, S.; Rafferty, K. Geothermal Heating and Cooling, Design of Ground-Source Heat Pump Systems; ASHRAE: Atlanta, GA, USA, 2014; ISBN 978-1-936504-85-5. [Google Scholar]
- YPEKA. EK407/B/9.4.2010, TOTEE 20701-3/2010, Climate Data of Greece—KENAK; YPEKA: Athens, Greece, 2010.
- Minetto, S.; Cecchinato, L.; Brignoli, R.; Marinetti, S.; Rossetti, A. Water-side reversible CO2 heat pump for residential application. Int. J. Refrig. 2016, 63, 237–250. [Google Scholar] [CrossRef]
- Colburn, A.P. A method of correlating forced convection heat-transfer data and a comparison with fluid friction. Int. J. Heat Mass Transf. 1964, 7, 1359–1384. [Google Scholar] [CrossRef]
Parameter | Symbol | Default Value | Range |
---|---|---|---|
High pressure | phigh | 85 bar | [80 to 100] bar |
Heat exchanger effectiveness | ηHEX | 90% | [0 to 100]% |
Temperature in the heater outlet | T4 | 35 °C | [32 to 38] °C |
Volumetric flow rate in the evaporator | Vf | 2 L/s | [1 to 5] L/s |
Thermal transmittance in the evaporator | (UA)e | 3 kW/K | [1 to 5] kW/K |
Ground temperature | Tg | 18.6 °C | [10 to 22] °C |
Thermal conductivity of the grout | kgrt | 2.1 W/mK | [0.5 to 4.0] W/mK |
Inner diameter of the U-tube | din | 0.025 m | [0.015 to 0.040] m |
Number of boreholes | N | 4 | [1 to 10] |
Bore length | Lbore | 50 m | [20 to 100] m |
Te (°C) | Phigh (bar) | COP Experimental | COP Simulation | COP Deviation |
---|---|---|---|---|
0.3 | 82.6 | 3.36 | 3.272 | 2.62% |
−0.4 | 91.4 | 3.36 | 3.144 | 6.43% |
−0.1 | 100.6 | 3.14 | 3.016 | 3.95% |
0.8 | 112.6 | 2.86 | 2.885 | 0.87% |
−0.6 | 100.0 | 3.04 | 2.996 | 1.45% |
0.4 | 90.2 | 3.34 | 3.218 | 3.65% |
1.0 | 98.9 | 3.06 | 3.114 | 1.76% |
1.2 | 108.4 | 3.02 | 2.971 | 1.62% |
−0.1 | 85.4 | 3.47 | 3.241 | 6.60% |
Parameter | Symbol | Value |
---|---|---|
Heating production | Qheat | 10 kW |
Electricity Consumption | Pel | 2.395 kW |
Heat input in the evaporator | Qe | 10.23 kW |
Heat rejection from the gas cooler | Qout | 2.625 kW |
Coefficient of performance | COP | 4.175 |
Compressor efficiency | ηcom | 59.27% |
Overall Resistance | Rov | 0.08211 mK/W |
Fluid heat transfer coefficient | hf | 3185 W/m2K |
Evaporator temperature | Te | 10.96 °C |
Fluid inlet temperature in the evaporator | Te,in | 15.01 °C |
Fluid outlet temperature in the evaporator | Te,out | 13.79 °C |
Low pressure | plow | 46.1 bar |
State Points | Temperature (T) | Pressure (p) | Specific Enthalpy (s) | Specific Entropy (h) |
---|---|---|---|---|
[°C] | [bar] | [kJ/kg] | [kJ/kg K] | |
1 | 10.96 | 46.1 | −84.95 | −0.961 |
2 | 23.60 | 46.1 | −59.09 | −0.872 |
3 | 83.01 | 85.0 | −15.36 | −0.821 |
4 | 35.00 | 85.0 | −197.90 | −1.388 |
5 | 25.00 | 85.0 | −245.80 | −1.546 |
6 | 16.16 | 85.0 | −271.70 | −1.634 |
7 | 10.96 | 46.1 | −271.70 | −1.618 |
Parameter | Value | COP | Comment |
---|---|---|---|
High pressure (phigh) | 80 bar | 3.243 | Maximization for an intermediate value |
86.47 bar | 4.189 | ||
100 bar | 3.908 | ||
Heat exchanger effectiveness (ηHEX) | 0% | 4.042 | Monotonically increasing (↗) |
100% | 4.186 | ||
Temperature in the heater outlet (T4) | 32 °C | 4.742 | Monotonically decreasing (↘) |
38 °C | 3.019 | ||
Volumetric flow rate in the evaporator (Vf) | 1 L/s | 4.115 | Monotonically increasing (↗) |
5 L/s | 4.186 | ||
Thermal transmittance in the evaporator (UA)e | 1 kW/K | 3.553 | Monotonically increasing (↗) |
5 kW/K | 4.343 | ||
Ground temperature (Tg) | 10 °C | 3.372 | Monotonically increasing (↗) |
22 °C | 4.620 | ||
Thermal conductivity of the grout (kgrt) | 0.5 W/mK | 3.614 | Monotonically increasing (↗) |
4.0 W/mK | 4.284 | ||
Inner diameter of the U-tube (din) | 0.015 m | 4.012 | Monotonically increasing (↗) |
0.040 m | 4.296 | ||
Number of boreholes (N) | 1 | 3.211 | Monotonically increasing (↗) |
10 | 4.501 | ||
Bore length (Lbore) | 20 m | 3.588 | Monotonically increasing (↗) |
100 m | 4.446 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellos, E.; Tzivanidis, C. Parametric Investigation of a Ground Source CO2 Heat Pump for Space Heating. Energies 2021, 14, 3563. https://doi.org/10.3390/en14123563
Bellos E, Tzivanidis C. Parametric Investigation of a Ground Source CO2 Heat Pump for Space Heating. Energies. 2021; 14(12):3563. https://doi.org/10.3390/en14123563
Chicago/Turabian StyleBellos, Evangelos, and Christos Tzivanidis. 2021. "Parametric Investigation of a Ground Source CO2 Heat Pump for Space Heating" Energies 14, no. 12: 3563. https://doi.org/10.3390/en14123563
APA StyleBellos, E., & Tzivanidis, C. (2021). Parametric Investigation of a Ground Source CO2 Heat Pump for Space Heating. Energies, 14(12), 3563. https://doi.org/10.3390/en14123563