Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis
Abstract
:1. Introduction
Oxygen Transport Membrane
- Computer simulation, which is used to analyze the weak points in the membrane, predict the stresses in the OTM module system, and optimize or verify production [53,57,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76]. Although a few researchers have studied hollow and tubular modules, limited research has been devoted toward plate-type modules.
2. Structural Analysis of OTM Modules
2.1. Model Description
2.2. Simulation Suite
- An internal pressure of 10 kPa was applied because the 1 MPa gas-channel layer of the external pressure can extract oxygen via the pressure difference between the internal and external surfaces.
- Each layer was laminated to constitute a unit. Thus, symmetric conditions were applied to the top face of the membrane layer and the bottom face of the gas-channel layer via the entire structure of all the laminated units.
- In view of the half model, the surroundings of the side with the hole were assigned the left-symmetry right-symmetry condition.
2.3. Result
3. Structure Optimization of OTM Module
3.1. Model Description
3.2. Simulaton Setup
- Minimization of the maximum equivalent stress of the membrane layer/effective area ratio
- Minimization of the maximum equivalent stress of the membrane layer
- Maximization of the effective area ratio
- Minimization of the maximum equivalent stress of the porous layer
- Minimization of the maximum von Mises stress in the entire OTM module.
3.3. Result
- Minimization of the maximum equivalent stress of the membrane layer to less than 58.5 MPa.
- Minimization of the maximum equivalent stress of the porous layer to less than 32 MPa.
- Minimization of the maximum equivalent stress/effective area ratio of the membrane layer.
- Maximization of the effective area ratio.
- Minimization of the maximum von Mises stress in the entire OTM module.
4. Discussion
4.1. General Discussion
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumann, S.; Meulenberg, W.A.; Buchkremer, H.P. Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air. J. Eur. Ceram. Soc. 2013, 33, 1251–1261. [Google Scholar] [CrossRef]
- Garcia-Fayos, J.; Vert, V.B.; Balaguer, M.; Solís, C.; Gaudillere, C.; Serra, J.M. Oxygen transport membranes in a biomass/coal combined strategy for reducing CO2 emissions: Permeation study of selected membranes under different CO2-rich atmospheres. Catal. Today 2015, 257, 221–228. [Google Scholar] [CrossRef]
- Häffelin, A.; Niedrig, C.; Wagner, S.F.; Baumann, S.; Meulenberg, W.A.; Ivers-Tiffée, E. Three-Dimensional Performance Model for Oxygen Transport Membranes. J. Electrochem. Soc. 2014, 161, F1409–F1415. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, S.H.; Lee, K.S.; Yu, J.H.; Seong, Y.-H.; Han, I.S. Mechanical properties of LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ)–GDC (Ce0.9Gd0.1O2−δ) for oxygen transport membranes. Ceram. Int. 2017, 43, 1916–1921. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhong, S.-H. Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu–KF/MgSiO catalyst. Catal. Today 2003, 82, 83–90. [Google Scholar] [CrossRef]
- Miachon, S.; Perez, V.; Crehan, G.; Torp, E.; Ræder, H.; Bredesen, R.; Dalmon, J.A. Comparison of a contactor catalytic membrane reactor with a conventional reactor: Example of wet air oxidation. Catal. Today 2003, 82, 75–81. [Google Scholar] [CrossRef]
- Niedrig, C.; Wagner, S.F.; Menesklou, W.; Baumann, S.; Ivers-Tiffée, E. Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900 °C determined by electrical conductivity relaxation. Solid State Ion. 2015, 283, 30–37. [Google Scholar] [CrossRef]
- Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439. [Google Scholar] [CrossRef]
- Dyer, P.N.; Richards, R.E.; Russek, S.L.; Taylor, D.M. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion. 2000, 134, 21–33. [Google Scholar] [CrossRef]
- Euser, B.; Zhu, H.; Berger, J.R.; Lewinsohn, C.A.; Kee, R.J. Electrochemical-Mechanical Coupling in Composite Planar Structures that Integrate Flow Channels and Ion-Conducting Membranes. J. Electrochem. Soc. 2017, 164, F732–F739. [Google Scholar] [CrossRef]
- Gao, J.; Liu, X.; Peng, D.; Meng, G. Electrochemical behavior of Ln0.6Sr0.4Co0.2Fe0.8O3−δ (Ln = Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC. Catal. Today 2003, 82, 207–211. [Google Scholar] [CrossRef]
- Rahemi, R.; Li, D. Variation in electron work function with temperature and its effect on the Young’s modulus of metals. Scr. Mater. 2015, 99, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Shemilt, J.E.; Stanway, C.L.; Williams, H.M. Effect of plastic forming on the conductivity of a samaria-doped ceria electrolyte. Solid State Ion. 2000, 134, 111–117. [Google Scholar] [CrossRef]
- Takamura, H.; Tuller, H.L. Ionic-conductivity-of-Gd2GaSbO7-Gd2Zr2O7-solid-solutions with structural disorder. Solid State Ion. 2000, 134, 67–73. [Google Scholar] [CrossRef]
- Tian, C.; Chan, S.-W. Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ion. 2000, 134, 89–102. [Google Scholar] [CrossRef]
- Whittingham, M.S. Insertion electrodes as SMART materials: The first 25 years and future promises. Solid State Ion. 2000, 134, 169–178. [Google Scholar] [CrossRef]
- Wang, L.; Murata, K.; Inaba, M. Production of pure hydrogen and more valuable hydrocarbons from ethane on a novel highly active catalyst system with a Pd-based membrane reactor. Catal. Today 2003, 82, 99–104. [Google Scholar] [CrossRef]
- Dahl, P.I.; Fontaine, M.-L.; Peters, T.; Mei, S.; Larring, Y.; Henriksen, P.P.; Bredesen, R. Development and testing of membrane materials and modules for high temperature air separation. Energy Procedia 2011, 4, 1243–1251. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.C.; Xu, X.Y.; Feng, S.J.; Liu, W.; Chen, C.S. La2NiO4 tubular membrane reactor for conversion of methane to syngas. Catal. Today 2003, 82, 151–156. [Google Scholar] [CrossRef]
- Sousa, J.M.; Mendes, A. Modeling a dense polymeric catalytic membrane reactor with plug flow pattern. Catal. Today 2003, 82, 241–254. [Google Scholar] [CrossRef]
- Schäfer, R.; Noack, M.; Kölsch, P.; Stöhr, M.; Caro, J. Comparison of different catalysts in the membrane-supported dehydrogenation of propane. Catal. Today 2003, 82, 15–23. [Google Scholar] [CrossRef]
- Basile, A.; Paturzo, L.; Gallucci, F. Co-current and counter-current modes for water gas shift membrane reactor. Catal. Today 2003, 82, 275–281. [Google Scholar] [CrossRef]
- Bouwmeester, H.J. Dense ceramic membranes for methane conversion. Catal. Today 2003, 82, 141–150. [Google Scholar] [CrossRef]
- Castanheiro, J.E.; Ramos, A.M.; Fonseca, I.; Vital, J. The acid-catalysed reaction of α-pinene over molybdophosphoric acid immobilised in dense polymeric membranes. Catal. Today 2003, 82, 187–193. [Google Scholar] [CrossRef]
- Dell, R.M. Batteries fifty years of materials development. Solid State Ion. 2000, 134, 139–158. [Google Scholar] [CrossRef]
- García-Fayos, J.; Ruhl, R.; Navarrete, L.; Bouwmeester, H.J.; Serra, J.M. Enhancing oxygen permeation through Fe2NiO4–Ce0.8Tb0.2O2−δ composite membranes using porous layers activated with Pr6O11 nanoparticles. J. Mater. Chem. A 2018, 6, 1201–1209. [Google Scholar] [CrossRef]
- Hornig, N.; Fritsching, U. Liquid dispersion in premix emulsification within porous membrane structures. J. Membr. Sci. 2016, 514, 574–585. [Google Scholar] [CrossRef]
- Hwang, J.H.; Cicek, N.; Oleszkiewicz, J. Effect of loading rate and oxygen supply on nitrification in a non-porous membrane biofilm reactor. Water Res. 2009, 43, 3301–3307. [Google Scholar] [CrossRef]
- Ilinich, O.M.; Gribov, E.N.; Simonov, P.A. Water denitrification over catalytic membranes: Hydrogen spillover and catalytic activity of macroporous membranes loaded with Pd and Cu. Catal. Today 2003, 82, 49–56. [Google Scholar] [CrossRef]
- Itoh, N.; Tamura, E.; Hara, S.; Takahashi, T.; Shono, A.; Satoh, K.; Namba, T. Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor. Catal. Today 2003, 82, 119–125. [Google Scholar] [CrossRef]
- Iwata, H.; Oodate, M.; Uyama, Y.; Amemiya, H.; Ikada, Y. Preparation of temperature-sensitive membranes by graft polymerization onto a porous membrane. J. Membr. Sci. 1991, 55, 119–130. [Google Scholar] [CrossRef]
- Klose, F.; Wolff, T.; Thomas, S.; Seidel-Morgenstern, A. Concentration and residence time effects in packed bed membrane reactors. Catal. Today 2003, 82, 25–40. [Google Scholar] [CrossRef]
- Lee, A.; Elam, J.W.; Darling, S.B. Membrane materials for water purification: Design, development, and application. Environ. Sci. Water Res. Technol. 2016, 2, 17–42. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Liu, S.-L.; Chuang, C.-H.; Chu, Y.-T. Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming. Catal. Today 2003, 82, 127–139. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Kinzer, K.E.; Tseng, H. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J. Membr. Sci. 1990, 52, 239–261. [Google Scholar] [CrossRef]
- Matsuyama, H.; Maki, T.; Teramoto, M.; Asano, K. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J. Membr. Sci. 2002, 204, 323–328. [Google Scholar] [CrossRef]
- Padaki, M.; Murali, R.S.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.; Hilal, N.; Ismail, A. Membrane technology enhancement in oil-water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Paturzo, L.; Gallucci, F.; Basile, A.; Vitulli, G.; Pertici, P. An Ru-based catalytic membrane reactor for dry reforming of methane—Its catalytic performance compared with tubular packed bed reactors. Catal. Today 2003, 82, 57–65. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Amooghin, A.E.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014, 39, 817–861. [Google Scholar] [CrossRef]
- Scofield, M.E.; Liu, H.; Wong, S.S. A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 2015, 44, 5836–5860. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, M.M.A.; Kargari, A.; Ismail, A.F.; Matsuura, T. Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives. Desalination 2016, 377, 73–90. [Google Scholar] [CrossRef]
- Steele, B.C.H. Materials for IT-SOFC stacks 35 years R&D: The inevitability of gradualness. Solid State Ion. 2000, 134, 3–20. [Google Scholar]
- Sukitpaneenit, P.; Chung, T.-S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. J. Environ. Sci. Technol. 2012, 46, 7358–7365. [Google Scholar] [CrossRef]
- Tennikov, M.B.; Gazdina, N.V.; Tennikova, T.B.; Svec, F. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins. J. Chromatogr. A 1998, 798, 55–64. [Google Scholar] [CrossRef]
- Uzio, D.; Miachon, S.; Dalmon, J.-A. Controlled Pt deposition in membrane mesoporous top layers. Catal. Today 2003, 82, 67–74. [Google Scholar] [CrossRef]
- van Dyk, L.; Miachon, S.; Lorenzen, L.; Torres, M.; Fiaty, K.; Dalmon, J.A. Comparison of microporous MFI and dense Pd membrane performances in an extractor-type CMR. Catal. Today 2003, 82, 167–177. [Google Scholar] [CrossRef]
- Wang, H.; Cong, Y.; Yang, W. Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactor. Catal. Today 2003, 82, 157–166. [Google Scholar] [CrossRef]
- Zhu, B.; Li, H.; Yang, W. AgBiVMo oxide catalytic membrane for selective oxidation of propane to acrolein. Catal. Today 2003, 82, 91–98. [Google Scholar] [CrossRef]
- Schulze-Küppers, F.; Baumann, S.; Meulenberg, W.A.; Stöver, D.; Buchkremer, H.P. Manufacturing and performance of advanced supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J. Membr. Sci. 2013, 433, 121–125. [Google Scholar] [CrossRef]
- Vilaseca, M.; Coronas, J.; Cirera, A.; Cornet, A.; Morante, J.R.; Santamaría, J. Use of zeolite films to improve the selectivity of reactive gas sensors. Catal. Today 2003, 82, 179–185. [Google Scholar] [CrossRef]
- Kurokawa, H.; Nakayama, T.; Kobayashi, Y.; Suzuki, K.; Takahashi, M.; Takami, S.; Kubo, M.; Itoh, N.; Selvam, P.; Miyamoto, A. Monte Carlo simulation of hydrogen absorption in palladium and palladium-silver alloys. Catal. Today 2003, 82, 233–240. [Google Scholar] [CrossRef]
- Niu, W.; Gill, S.; Dong, H.; Bai, C. A two-scale model for predicting elastic properties of porous titanium formed with space-holders. Comput. Mater. Sci. 2010, 50, 172–178. [Google Scholar] [CrossRef]
- Raju, K.; Kim, S.; Yu, J.H.; Kim, S.-H.; Seong, Y.-H.; Han, I.-S. Rietveld refinement and estimation of residual stress in GDC–LSCF oxygen transport membrane ceramic composites. Ceram. Int. 2018, 44, 10293–10298. [Google Scholar] [CrossRef]
- Roberts, A.P.; Garboczi, E.J. Elastic Properties of Model Porous Ceramics. J. Am. Ceram. Soc. 2000, 83, 3041–3048. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, X.; Giuliani, F.; Atkinson, A. Fracture Toughness of Porous Material of LSCF in Bulk and Film Forms. J. Am. Ceram. Soc. 2015, 98, 2183–2190. [Google Scholar] [CrossRef] [Green Version]
- Jayatilaka, A.D.; Trustrum, K. Statistical approach to brittle fracture. J. Mater. Sci. 1977, 12, 1426–1430. [Google Scholar] [CrossRef]
- Bruno, G.; Efremov, A.M.; Levandovskyi, A.N.; Clausen, B. Connecting the macro- and microstrain responses in technical porous ceramics: Modeling and experimental validations. J. Mater. Sci. 2010, 46, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Kostogloudis, G.C.; Ftikos, C.; Ahmad-Khanlou, A.; Naoumidis, A.; Stoverb, D. Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte. Solid State Ion. 2000, 134, 127–138. [Google Scholar] [CrossRef]
- Baek, S.H.; Cho, S.S. An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates. Trans. Korean Soc. Mech. Eng. A 2011, 35, 223–233. [Google Scholar] [CrossRef]
- Cho, Y.J.; Lee, W.J.; Park, S.K.; Park, Y.H. Effect of Pore Morphology on Deformation Behaviors in Porous Al by FEM Simulations. Adv. Eng. Mater. 2013, 15, 166–169. [Google Scholar] [CrossRef]
- Darcovich, K.; Be’ra, L.; Shinagawa, K. Particle size distribution effects in an FEM model of sintering porous ceramics. Mater. Sci. Eng. 2003, 341, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, F.J.Q.; Nuño, N. Finite element modeling of manufacturing irregularities of porous materials. Biomater. Biomech. Bioeng. 2016, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Goto, S.; Tagawa, T.; Assabumrungrat, S.; Praserthdam, P. Simulation of membrane microreactor for fuel cell with methane feed. Catal. Today 2003, 82, 223–232. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Paiboon, J.; Huang, J.; Fenton, G.A. Homogenization of geomaterials containing voids by random fields and finite elements. Int. J. Solids Struct. 2012, 49, 2006–2014. [Google Scholar] [CrossRef] [Green Version]
- Ilic, S.; Hackl, K.; Gilbert, R. Application of the multiscale FEM to the modeling of cancellous bone. Biomech. Model. Mechanobiol. 2010, 9, 87–102. [Google Scholar] [CrossRef]
- Khoei, A.R.; Haghighat, E. Extended finite element modeling of deformable porous media with arbitrary interfaces. Appl. Math. Model. 2011, 35, 5426–5441. [Google Scholar] [CrossRef]
- Kim, C.; Sohn, Y.; Park, G.; Kim, M.; Lee, J.; Kim, C.; Choi, Y.; Cho, S. The Stress Distribution Analysis of PEMFC GDL using FEM. Trans. Korean Hydrog. New Energy Soc. 2012, 23, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, D.; Chateau, A.; Ginebra, M.P.; Planell, J.A. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 2006, 27, 5326–5334. [Google Scholar] [CrossRef]
- Michailidis, N.; Stergioudi, F.; Omar, H.; Papadopoulos, D.; Tsipas, D.N. Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading. Colloids Surf. A Physicochem. Eng. Asp. 2011, 382, 124–131. [Google Scholar] [CrossRef]
- Naddeo, F.; Baldino, L.; Cardea, S.; Naddeo, A.; Reverchon, E. Finite element multiscale modelling of elastic behavior of cellulose acetate—Graphene oxide nanocomposites, produced using a SC-CO2 assisted technique. J. Supercrit. Fluids 2018, 140, 248–257. [Google Scholar] [CrossRef]
- Nowak, M.; Nowak, Z.; Pęcherski, R.B.; Potoczek, M.; Śliwa, R.E. On the Reconstruction Method of Ceramic Foam Structures and the Methodology of Young Modulus Determination. Arch. Metall. Mater. 2013, 58, 1219–1222. [Google Scholar] [CrossRef] [Green Version]
- Panico, M.; Brinson, L.C. Computational modeling of porous shape memory alloys. Int. J. Solids Struct. 2008, 45, 5613–5626. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Brinson, L.C. Finite element modeling of porous titanium. Int. J. Solids Struct. 2007, 44, 320–335. [Google Scholar] [CrossRef] [Green Version]
- Rad, M.S.; Prawoto, Y.; Ahmad, Z. Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials. Mech. Mater. 2014, 74, 76–87. [Google Scholar] [CrossRef]
- Tang, C.Y.; Tsui, C.P.; Lin, W.; Uskokovic, P.S.; Wang, Z.W. Multi-level finite element analysis for progressive damage behavior of HA/PEEK composite porous structure. Compos. Part B Eng. 2013, 55, 22–30. [Google Scholar] [CrossRef]
- Ulrich, D.; van Rietbergen, B.; Weinans, H. Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J. Biomech. 1998, 31, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Ciureanu, M.; Mikhailenko, S.D.; Kaliaguine, S. PEM fuel cells as membrane reactors: Kinetic analysis by impedance spectroscopy. Catal. Today 2003, 82, 195–206. [Google Scholar] [CrossRef]
- Fritsch, D.; Kuhr, K.; Mackenzie, K.; Kopinke, F.-D. Hydrodechlorination of chloroorganic compounds in ground water by palladium catalysts. Catal. Today 2003, 82, 105–118. [Google Scholar] [CrossRef]
- Jahnke, T.; Futter, G.; Latz, A.; Malkow, T.; Papakonstantinou, G.; Tsotridis, G.; Schott, P.; Gérard, M.; Quinaud, M.; Quiroga, M.; et al. Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale. J. Power Sources 2016, 304, 207–233. [Google Scholar] [CrossRef] [Green Version]
- Kaliaguine, S.; Mikhailenko, S.D.; Wang, K.P.; Xing, P.; Robertson, G.; Guiver, M. Properties of SPEEK based PEMs for fuel cell application. Catal. Today 2003, 82, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choun, M.; Ye, Y.; Lee, J.; Mun, Y.; Kang, E.; Hwang, J.; Lee, Y.H.; Shin, C.H.; Moon, S.H. Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position. Angew. Chem. Int. Ed. 2015, 54, 9230–9234. [Google Scholar] [CrossRef] [PubMed]
- Tsuru, T.; Kan-no, T.; Yoshioka, T.; Asaeda, M. A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes. Catal. Today 2003, 82, 41–48. [Google Scholar] [CrossRef]
- Vincent, C.A. Lithium batteries: A 50-year perspective, 1959–2009. Solid State Ion. 2000, 134, 159–167. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.G.; Kim, S.-H.; Kim, S.; Yu, J.H.; Cho, S.W. Prediction of Material Properties of Ceramic Composite Material by Porous Structure and Porosity Using the Finite Element Method. Int. J. Precis. Eng. Manuf. 2019, 20, 805–814. [Google Scholar] [CrossRef]
ID | Name | Material | Thickness (μm) |
---|---|---|---|
1 | Membrane | G8L2 (Dense) | 120 |
2 | Porous support layer | G5L5 (Porous) | 30 |
3 | Gas-channel layer | G8L2 (Dense) | 200 |
Layer | Maximum von Mises Stress [MPa] |
---|---|
Membrane layer | 35 |
Porous layer | 95 |
Gas-channel layer | 46 |
Layer | Maximum von Mises Stress [MPa] |
---|---|
Membrane layer | 28 |
Porous layer | 95 |
Gas-channel layer | 58 |
Layer | Maximum von Mises Stress [Half Model] | Maximum von Mises Stress [Section Model] |
---|---|---|
Membrane layer | 35 MPa | 28 MPa |
Porous layer | 95 MPa | 95 MPa |
Gas-channel layer | 46 MPa | 58 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.G.; Nam, J.W.; Kim, S.-H.; Cho, S.W. Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis. Energies 2021, 14, 4992. https://doi.org/10.3390/en14164992
Lee DG, Nam JW, Kim S-H, Cho SW. Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis. Energies. 2021; 14(16):4992. https://doi.org/10.3390/en14164992
Chicago/Turabian StyleLee, Dong Gyu, Ji Woo Nam, Soo-Hyun Kim, and Seong Wook Cho. 2021. "Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis" Energies 14, no. 16: 4992. https://doi.org/10.3390/en14164992
APA StyleLee, D. G., Nam, J. W., Kim, S. -H., & Cho, S. W. (2021). Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis. Energies, 14(16), 4992. https://doi.org/10.3390/en14164992