Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Synthesis of Silicalite-1 Nanocrystals
2.3. Synthesis of Conventional Al-ZSM-5
2.4. Synthesis of Al-ZSM-5 Nanocrystals
2.5. Ion Exchange
2.6. Preparation of the Mo/HZSM-5 Catalysts
2.7. MDA Reaction
2.8. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Čejka, J.; Centi, G.; Perez-Pariente, J.; Roth, W.J. Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catal. Today 2012, 179, 2–15. [Google Scholar] [CrossRef]
- Fechete, I.; Wang, Y.; Védrine, J.C. The past, present and future of heterogeneous catalysis. Catal. Today 2012, 189, 2–27. [Google Scholar] [CrossRef]
- Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem. Rev. 2017, 117, 8497–8520. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Ginosar, D.M.; He, T.; Zhang, Y.; Fan, M.; Chen, R. Progress in Nonoxidative Dehydroaromatization of Methane in the Last 6 Years. Ind. Eng. Chem. Res. 2018, 57, 1768–1789. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, M.; Wang, T.; Liu, B.; Jiang, F.; Liu, X. Probing cobalt localization on HZSM-5 for efficient methane dehydroaromatization catalysts. J. Catal. 2020, 387, 102–118. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, M.; Liu, B.; Jiang, F.; Liu, X. CH4 conversion over Ni/HZSM-5 catalyst in the absence of oxygen: Decomposition or dehydroaromatization? Chem. Commun. 2020, 56, 4396–4399. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, I.; Ould-Chikh, S.; Aguilar-Tapia, A.; Li, G.; Pidko, E.A.; Hazemann, J.-L.; Kapteijn, F.; Gascon, J. Activity Descriptors Derived from Comparison of Mo and Fe as Active Metal for Methane Conversion to Aromatics. J. Am. Chem. Soc. 2019, 141, 18814–18824. [Google Scholar] [CrossRef]
- Lim, T.H.; Kim, D.H. Characteristics of Mn/H-ZSM-5 catalysts for methane dehydroaromatization. Appl. Catal. A Gen. 2019, 577, 10–19. [Google Scholar] [CrossRef]
- Wang, K.; Huang, X.; Li, D. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: One-step synthesis and the exceptional catalytic performance. Appl. Catal. A Gen. 2018, 556, 10–19. [Google Scholar] [CrossRef]
- Zhu, P.; Yang, G.; Sun, J.; Fan, R.; Zhang, P.; Yoneyama, Y.; Tsubaki, N. A hollow Mo/HZSM-5 zeolite capsule catalyst: Preparation and enhanced catalytic properties in methane dehydroaromatization. J. Mater. Chem. A 2017, 5, 8599–8607. [Google Scholar] [CrossRef]
- Wu, Y.; Emdadi, L.; Wang, Z.; Fan, W.; Liu, D. Textural and catalytic properties of Mo loaded hierarchical meso-/microporous lamellar MFI and MWW zeolites for direct methane conversion. Appl. Catal. A Gen. 2014, 470, 344–354. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, M.; Cheng, L.; Yang, J.; Liu, L.; Wang, J.; Yin, D.; Lu, J.; Zhang, Y. Facile synthesis and its high catalytic performance of hierarchical ZSM-5 zeolite from economical bulk silicon oxides. Microporous Mesoporous Mater. 2018, 260, 116–124. [Google Scholar] [CrossRef]
- Kosinov, N.; Hensen, E.J. Reactivity, Selectivity, and Stability of Zeolite-Based Catalysts for Methane Dehydroaromatization. Adv. Mater. 2020, 32, e2002565. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Song, Y.; Zhang, Z. A binder-free fluidizable Mo/HZSM-5 catalyst for non-oxidative methane dehydroaromatization in a dual circulating fluidized bed reactor system. Catal. Today 2017, 279, 115–123. [Google Scholar] [CrossRef]
- Morejudo, S.H.; Zanón, R.; Escolástico, S.; Yuste-Tirados, I.; Malerød-Fjeld, H.; Vestre, P.K.; Coors, W.G.; Martínez, A.; Norby, T.; Serra, J.M.; et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 2016, 353, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Hwang, A.; Kim, Y.T.; Hong, D.-Y.; Park, M.-J. Kinetic modeling of methane dehydroaromatization over a Mo2C/H-ZSM5 catalyst: Different deactivation behaviors of the Mo2C and H-ZSM5 sites. Catal. Today 2020, 352, 140–147. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Ge, Q. CH4 dissociation and C C coupling on Mo-terminated MoC surfaces: A DFT study. Catal. Today 2020, 339, 54–61. [Google Scholar] [CrossRef]
- Ha, V. Aromatization of methane over zeolite supported molybdenum: Active sites and reaction mechanism. J. Mol. Catal. A Chem. 2002, 181, 283–290. [Google Scholar] [CrossRef]
- Liu, L.; Wang, N.; Zhu, C.; Liu, X.; Zhu, Y.; Guo, P.; Alfilfil, L.; Dong, X.; Zhang, D.; Han, Y. Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM-5. Angew. Chem. 2019, 132, 829–835. [Google Scholar] [CrossRef]
- Kosinov, N.; Coumans, F.J.A.G.; Uslamin, E.A.; Wijpkema, A.S.G.; Mezari, B.B.; Hensen, E.J. Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis? ACS Catal. 2017, 7, 520–529. [Google Scholar] [CrossRef]
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nat. Cell Biol. 2009, 461, 246–249. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Kim, D.; Kumar, P.; Lee, P.S.; Rangnekar, N.; Bai, P.; Shete, M.; Elyassi, B.; Lee, H.-S.; Narasimharao, K.; et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nat. Cell Biol. 2017, 543, 690–694. [Google Scholar] [CrossRef]
- Na, K.; Park, W.; Seo, Y.; Ryoo, R. Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores. Chem. Mater. 2011, 23, 1273–1279. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Tsapatsis, M.; Asahina, S.; Cychosz, K.A.; Agrawal, K.V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; et al. Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science 2012, 336, 1684–1687. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.S.; Ryoo, R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous Mesoporous Mater. 2012, 151, 107–112. [Google Scholar] [CrossRef]
- Ma, Q.; Fu, T.; Wang, Y.; Li, H.; Cui, L.; Li, Z. Development of mesoporous ZSM-5 zeolite with microporosity preservation through induced desilication. J. Mater. Sci. 2020, 55, 11870–11890. [Google Scholar] [CrossRef]
- Ma, Q.; Fu, T.; Li, H.; Cui, L.; Li, Z. Insight into the Selection of the Post-Treatment Strategy for ZSM-5 Zeolites for the Improvement of Catalytic Stability in the Conversion of Methanol to Hydrocarbons. Ind. Eng. Chem. Res. 2020, 59, 11125–11138. [Google Scholar] [CrossRef]
- Kim, S.; Park, G.; Woo, M.H.; Kwak, G.; Kim, S.K. Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion. ACS Catal. 2019, 9, 2880–2892. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Han, L.; Wang, J.; Zhao, L. Seed-assisted synthesis and characterization of nano and micron ZSM-5 molecular sieves in template-free system. J. Solid State Chem. 2020, 290, 121536. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Q.; Lei, C.; Han, S.; Zhu, Q.; Maurer, S.; Dai, D.; Parvulescu, A.-N.; Mueller, U.; Meng, X.; et al. An efficient, rapid, and non-centrifugation synthesis of nanosized zeolites by accelerating the nucleation rate. J. Mater. Chem. A 2018, 6, 21156–21161. [Google Scholar] [CrossRef]
- Li, T.; Krumeich, F.; Van Bokhoven, J.A. Where Does the Zeolite ZSM-5 Nucleation and Growth Start? The Effect of Aluminum. Cryst. Growth Des. 2019, 19, 2548–2551. [Google Scholar] [CrossRef]
- Nada, M.H.; Larsen, S.C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous Mesoporous Mater. 2017, 239, 444–452. [Google Scholar] [CrossRef]
- Javdani, A.; Ahmadpour, J.; Yaripour, F. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review. Microporous Mesoporous Mater. 2019, 284, 443–458. [Google Scholar] [CrossRef]
- Xue, T.; Chen, L.; Wang, Y.M.; He, M.-Y. Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous Mesoporous Mater. 2012, 156, 97–105. [Google Scholar] [CrossRef]
- Chen, L.; Xue, T.; Wu, H.; Wu, P. Hierarchical ZSM-5 nanocrystal aggregates: Seed-induced green synthesis and its application in alkylation of phenol with tert-butanol. RSC Adv. 2018, 8, 2751–2758. [Google Scholar] [CrossRef] [Green Version]
- Cundy, C.S.; Cox, P.A. The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism. Microporous Mesoporous Mater. 2005, 36, 1–78. [Google Scholar] [CrossRef]
- Ren, X.-Y.; Cao, J.-P.; Zhao, X.-Y.; Yang, Z.; Wang, Y.-J.; Chen, Q.; Zhao, M.; Wei, X.-Y. Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights. J. Anal. Appl. Pyrolysis 2019, 139, 22–30. [Google Scholar] [CrossRef]
- Ghorbanpour, A.; Gumidyala, A.; Grabow, L.C.; Crossley, S.; Rimer, J.D. Epitaxial Growth of ZSM-5@Silicalite-1: A Core–Shell Zeolite Designed with Passivated Surface Acidity. ACS Nano 2015, 9, 4006–4016. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, Y.; Jehng, J.-M.; Tang, Y.; Wachs, I.E.; Podkolzin, S.G. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 2015, 348, 686–690. [Google Scholar] [CrossRef] [Green Version]
Catalyst (Si/Al Ratio) | Weight of Formed Zeolite (g) | Average Particle Size (nm) | Particle Volume (nm3) | Number of Particles (Counts) |
---|---|---|---|---|
∞ | 0.21 | 250 | 6,750,000 | 1.75 × 1013 |
140 | 0.13 | 230 | 4,264,000 | 1.71 × 1013 |
70 | 0.08 | 200 | 3,141,593 | 1.43 × 1013 |
40 | 0.05 | 180 | 3,053,628 | 9.17 × 1012 |
35 | 0.027 | 150 | 1,767,146 | 8.57 × 1012 |
25 | 0.001 | 80 | 268,083 | 6.76 × 1012 |
Catalyst | Vtotal a (cm3/g) | Vmicro b (cm3/g) | SBET c (m2/g) | Sext d (m2/g) |
---|---|---|---|---|
80 nm SAR 35 | 0.23 | 0.13 | 432 | 92 |
80 nm Mo SAR 35 | 0.18 | 0.11 | 336 | 59 |
100 nm SAR 140 | 0.22 | 0.15 | 473 | 92 |
100 nm Mo SAR 140 | 0.15 | 0.12 | 335 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Kang, S.K.; Zhang, H.; Tikue, E.T.; Lee, J.H.; Lee, P.S. Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion. Energies 2021, 14, 485. https://doi.org/10.3390/en14020485
Kim HS, Kang SK, Zhang H, Tikue ET, Lee JH, Lee PS. Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion. Energies. 2021; 14(2):485. https://doi.org/10.3390/en14020485
Chicago/Turabian StyleKim, Hyun Su, Su Kyung Kang, Haoxiang Zhang, Elsa Tsegay Tikue, Jin Hyung Lee, and Pyung Soo Lee. 2021. "Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion" Energies 14, no. 2: 485. https://doi.org/10.3390/en14020485
APA StyleKim, H. S., Kang, S. K., Zhang, H., Tikue, E. T., Lee, J. H., & Lee, P. S. (2021). Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion. Energies, 14(2), 485. https://doi.org/10.3390/en14020485