Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Bulk Parameter
3.2. Distribution of Particle Sizes
3.3. Particle-Size Fractionation
3.3.1. Settling Layer-Specified Character
3.3.2. Layer-Specified OM Distribution
3.4. Thermal Variation of OM and Mineral
3.4.1. TG-DSC Analysis
3.4.2. Changes in Mineral Phases
3.4.3. Changes in N-Alkane Distribution
4. Discussion
4.1. Particle-Size Distribution Associated with OM Occurrence
4.2. Influence of Depositional Environment on OM Occurrence
4.3. Synchronous Response of OM and Minerals to Thermal Variation
4.4. Implication for Hydrocarbon-Generated Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.; Cai, J.; Liu, W.; Lu, X. Occurrence of stable and mobile organic matter in the clay-sized fraction of shale: Significance for petroleum geology and carbon cycle. Int. J. Coal Geol. 2016, 160–161, 1–10. [Google Scholar] [CrossRef]
- Keil, R.; Hedges, J. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. Chem. Geol. 1993, 107, 385–388. [Google Scholar] [CrossRef]
- Keil, R.G.; Tsamakis, E.; Fuh, C.; Giddings, J.; Hedges, J.I. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation. Geochim. Cosmochim. Acta 1994, 58, 879–893. [Google Scholar] [CrossRef]
- Kell, R.G.; Montluçon, D.B.; Prahli, F.G. Sorptive preservation of labile organic matter in marine sediments. Nature 1994, 370, 549–552. [Google Scholar] [CrossRef]
- Mayer, L.M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 1994, 58, 1271–1284. [Google Scholar] [CrossRef]
- Bergamaschi, B.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montluçon, D.B.; Hedges, J.I. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim. Cosmochim. Acta 1997, 61, 1247–1260. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 1995, 49, 81–95. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Pevear, D.R.; Hill, R.J. Mineral surface control of organic carbon in black shale. Science 2002, 295, 657–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Liu, Z.; Zhou, R.; Liu, R.; Gao, Y. Variation in pore space and structure of organic-rich oil-prone shales from a non-marine basin: Constraints from organic matter and minerals. Acta Geol. Sin. 2021, online. [Google Scholar] [CrossRef]
- Mayer, L. Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochim. Cosmochim. Acta 1999, 63, 207–215. [Google Scholar] [CrossRef]
- Dexter, A.; Richard, G.; Arrouays, D.; Czyż, E.A.; Jolivet, C.; Duval, O. Complexed organic matter controls soil physical properties. Geoderma 2008, 144, 620–627. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G. Organic geochemical perspectives on estuarine processes: Sorption reactions and consequences. Mar. Chem. 1999, 65, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Mayer, L.M.; Schick, L.L.; Hardy, K.R.; Wagai, R.; McCarthy, J. Organic matter in small mesopores in sediments and soils. Geochim. Cosmochim. Acta 2004, 68, 3863–3872. [Google Scholar] [CrossRef]
- Cai, J.G.; Bao, Y.J.; Yang, S.Y.; Wang, X.X.; Fan, D.D.; Xu, J.L.; Wang, A.P. Research on preservation and enrichment mecha-nisms of organic matter in muddy sediment and mudstone. Sci. China Ser. D Earth Sci. 2007, 50, 765–775. [Google Scholar] [CrossRef]
- Lopez-Sangil, L.; Rovira, P. Sequential chemical extractions of the mineral associated soil organic matter: An integrated ap-proach for the fractionation of organo-mineral complexes. Soil Biol. Biochem. 2013, 62, 57–67. [Google Scholar] [CrossRef]
- Arnarson, T.S.; Keil, R.G. Changes in organic matter–mineral interactions for marine sediments with varying oxygen exposure times. Geochim. Cosmochim. Acta 2007, 71, 3545–3556. [Google Scholar] [CrossRef]
- Arnarson, T.S.; Keil, R.G. Mechanisms of pore water organic matter adsorption to montmorillonite. Mar. Chem. 2000, 71, 309–320. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Löhr, S.C.; Fraser, S.A.; Baruch, E.T. Direct evidence for organic carbon preservation as clay-organic nano-composites in a Devonian black shale: From deposition to diagenesis. Earth Planet Sc. Lett. 2014, 388, 59–70. [Google Scholar] [CrossRef]
- Guan, P.; Xu, Y.; Liu, W. Diverse occurrence and quantitative evaluation of organic matter in petroleum source rocks. Sci. Bull. 1998, 43, 1556–1559. [Google Scholar]
- Cai, J.; Xu, J.; Yang, S.; Bao, Y.; Lu, L. The fractionation of an argillaceous sediment & difference in organic matter enrichment in different fractions. Geol. J. China Univ. 2006, 12, 234–241. [Google Scholar]
- Brendow, K. Global oil shale issues and perspectives. Oil Shale 2003, 20, 81–92. [Google Scholar]
- Liu, Z.; Meng, Q.; Dong, Q.; Zhu, J.; Guo, W.; Ye, S.; Liu, R.; Jia, J. Characteristics and resource potential of oil shale in China. Oil Shale 2017, 34, 15. [Google Scholar] [CrossRef] [Green Version]
- Palci, F.; Fraser, A.J.; Neumaier, M.; Goode, T.; Parkin, K.; Wilson, T. Shale oil and gas resource evaluation through 3D basin and petroleum systems modelling: A case study from the East Midlands, onshore UK. Pet. Geosci. 2020, 26, 525–543. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, S.; Hou, L.; Yang, T.; Li, X.; Guo, B.; Yang, Z. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet. Explor. Dev. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Sun, Y.-H.; Bai, F.-T.; Lü, X.-S.; Li, Q.; Liu, Y.-M.; Guo, M.-Y.; Guo, W.; Liu, B. A novel energy-efficient pyrolysis process: Self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed. Sci. Rep. 2015, 5, 8290. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Li, Q.; Lü, X.; Sun, Y. Productivity analysis of fuyu oil shale in-situ pyrolysis by injecting hot nitrogen. Energies 2021, 14, 5114. [Google Scholar] [CrossRef]
- Han, Y.; Horsfield, B.; Mahlstedt, N.; Wirth, R.; Lareau, H. Factors controlling source and reservoir characteristics in the Ni-obrara shale oil system, Denver Basin. AAPG Bull. 2019, 103, 2045–2072. [Google Scholar] [CrossRef]
- En, A.; Kozlu, H. Impact of maturity on producible shale oil volumes in the Silurian (Llandovery) hot shales of the northern Arabian plate, southeastern Turkey. AAPG Bull. 2020, 104, 507–524. [Google Scholar] [CrossRef]
- Maaten, B.; Loo, L.; Konist, A.; Siirde, A. Mineral matter effect on the decomposition of Ca-rich oil shale. J. Therm. Anal. Calorim. 2017, 131, 2087–2091. [Google Scholar] [CrossRef]
- Bai, F.; Liu, Y.; Lai, C.; Sun, Y.; Wang, J.; Sun, P.; Xue, L.; Zhao, J.; Guo, M. Thermal degradations and processes of four kerogens via thermogravimetric–fourier-transform infrared: Pyrolysis performances, products, and kinetics. Energ. Fuel 2020, 34, 2969–2979. [Google Scholar] [CrossRef]
- Pikkor, H.; Maaten, B.; Baird, Z.S.; Jrvik, O.; Lees, H. Surface area of oil shale and its solid pyrolysis products depending on the particle size. Chem. Eng. Trans. 2020, 81, 961–966. [Google Scholar] [CrossRef]
- Yu, F.; Sun, P.; Zhao, K.; Ma, L.; Tian, X. Experimental constraints on the evolution of organic matter in oil shales during heating: Implications for enhanced in situ oil recovery from oil shales. Fuel 2019, 261, 116412. [Google Scholar] [CrossRef]
- Yan, J.; Jiang, X.; Han, X.; Liu, J. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel 2013, 104, 307–317. [Google Scholar] [CrossRef]
- Du, J.; Cai, J.; Lei, T.; Li, Y. Diversified roles of mineral transformation in controlling hydrocarbon generation process, mechanism, and pattern. Geosci. Front. 2020, 12, 725–736. [Google Scholar] [CrossRef]
- Löhr, S.; Kennedy, M. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2. Biogeosciences 2014, 11, 4971–4983. [Google Scholar] [CrossRef] [Green Version]
- Burnham, A.; Huss, E.B.; Singleton, M.F. Pyrolysis kinetics for Green River oil shale from the saline zone. Fuel 1983, 62, 1199–1204. [Google Scholar] [CrossRef]
- Vandenbroucke, M.; Largeau, C. Kerogen origin, evolution and structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Ding, F.; Cai, J.; Song, M.; Yuan, P. The relationship between organic matter and specific surface area in <2 μm clay size fraction of muddy source rock. Sci. China Earth Sci. 2013, 56, 1343–1349. [Google Scholar] [CrossRef]
- Bu, H.; Yuan, P.; Liu, H.; Liu, D.; Liu, J.; He, H.; Zhou, J.; Song, H.; Li, Z. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis. Geochim. Cosmochim. Acta 2017, 212, 1–15. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, P.; Liu, D.; Bu, H.; Song, H.; Qin, Z.; He, H. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals. Appl. Clay Sci. 2018, 153, 205–216. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, J.; Wang, Y.; Liu, H.; Zhang, S. Evolution of organic-mineral interactions and implications for organic carbon occurrence and transformation in shale. GSA Bull. 2019, 132, 784–792. [Google Scholar] [CrossRef]
- Haile, B.G.; Klausen, T.G.; Jahren, J.; Braathen, A.; Hellevang, H. Thermal history of a triassic sedimentary sequence verified by a multi-method approach: Edgeøya, Svalbard, Norway. Basin Res. 2018, 30, 1075–1097. [Google Scholar] [CrossRef]
- Mangenot, X.; Deçoninck, J.-F.; Bonifacie, M.; Rouchon, V.; Collin, P.-Y.; Quesne, D.; Gasparrini, M.; Sizun, J.-P. Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes-France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data. Basin Res. 2018, 31, 361–379. [Google Scholar] [CrossRef]
- Feng, Z.; Jia, C.; Xie, X.; Zhang, S.; Feng, Z.; Timothy, A.C. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China. Basin Res. 2010, 22, 79–95. [Google Scholar] [CrossRef]
- Jia, J.; Bechtel, A.; Liu, Z.; Strobl, S.A.; Sun, P.; Sachsenhofer, R. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. Int. J. Coal Geol. 2013, 113, 11–26. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Z.; Bechtel, A.; Strobl, S.A.I.; Sun, P. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). Int. J. Earth Sci. 2013, 102, 1717–1734. [Google Scholar] [CrossRef]
- Bechtel, A.; Jia, J.; Strobl, S.A.; Sachsenhofer, R.; Liu, Z.; Gratzer, R.; Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem. 2012, 46, 76–95. [Google Scholar] [CrossRef]
- Gratzer, R.; Bechtel, A.; Sachsenhofer, R.F.; Linzer, H.-G.; Reischenbacher, D.; Schulz, H.-M. Oil–oil and oil-source rock correlations in the Alpine Foreland Basin of Austria: Insights from biomarker and stable carbon isotope studies. Mar. Pet. Geol. 2011, 28, 1171–1186. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Z.; Meng, Q.; Sun, P.; Xu, J.; Liu, R.; Bai, Y. Response mechanism between oil yield and total organic carbon of nonrmarine oil shale in China. J. Jilin Univ. Earth Sci. Ed. 2020, 50, 368–377. [Google Scholar]
- Torn, M.; Trumbore, S.E.; Chadwick, O.A.; Vitousek, P.M.; Hendricks, D.M. Mineral control of soil organic carbon storage and turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Torn, M.S.; Jahn, R. Stabilization of soil organic matter: Association with minerals or chemical recalci-trance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Wagner, T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proc. Natl. Acad. Sci. 2011, 108, 9776–9781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, D.; Lehmann, J.; Harden, J.; Wang, J.; Kinyangi, J.; Heymann, K.; Karunakaran, C.; Lu, Y.; Wirick, S.; Jacobsen, C. Micro- and nano-environments of carbon sequestration: Multi-element STXM–NEXAFS spectromicroscopy assessment of mi-crobial carbon and mineral associations. Chem. Geol. 2012, 329, 53–73. [Google Scholar] [CrossRef]
- Durand, B. Kerogen-Insoluble Organic Matter from Sedimentary Rocks; Technip: Paris, France, 1980. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer: New York, NY, USA, 1984. [Google Scholar]
- Jeng, W.-L.; Chen, M.-P. Grain size effect on bound lipids in sediments off northeastern Taiwan. Org. Geochem. 1995, 23, 301–310. [Google Scholar] [CrossRef]
- Garcette-Lepecq, A.; Largeau, C.; Bouloubassi, I.; Derenne, S.; Saliot, A.; Lorre, A.; Point, V. Lipids and their modes of occur-rence in two surface sediments from the Danube delta and North-western Black sea: Implications for sources and early diagenetic alternation I: Carboxylic acids. Org. Geochem. 2004, 35, 959–980. [Google Scholar] [CrossRef]
- Keil, R.G.; Tsamakis, E.; Giddings, J.C.; Hedges, J.H. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size classes of modern marine sediments from the Washington coast. Geochim. Cosmochim. Ac. 1998, 62, 1347–1364. [Google Scholar] [CrossRef]
- Schulte, S.; Mangelsdorf, K.; Rullkötter, J. Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry. Org. Geochem. 2000, 31, 1005–1022. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Goyne, K.W.; Chorover, J.; Komarneni, S.; Brantley, S.L. Mineral mesopore effects on nitrogenous organic matter adsorption. Org. Geochem. 2004, 35, 355–375. [Google Scholar] [CrossRef]
- Hartnett, H.E.; Keil, R.G.; Hedges, J.I.; Devol, A.H. Influence of oxygen exposure time on organic carbon preservation in con-tinental margin sediments. Nature 1998, 391, 572–575. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 2000, 31, 711–725. [Google Scholar] [CrossRef]
- Arnarson, T.S.; Keil, R.G. Influence of organic-mineral aggregates on microbial degradation of the dinoflagellate Scrippsiella trochoidea. Geochim. Cosmochim. Acta 2005, 69, 2111–2117. [Google Scholar] [CrossRef]
- Horsfield, B. Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography. Geochim. Cosmochim. Acta 1989, 53, 891–901. [Google Scholar] [CrossRef]
- Jia, J.; Wu, Y.; Miao, C.; Fu, C.; Xie, W.; Qin, J.; Wang, X. Tectonic controls on the sedimentation and thermal history of supra-detachment basins: A case study of the early Cretaceous Fuxin Basin, NE China. Tectonics 2021, 40, e2020TC006535. [Google Scholar] [CrossRef]
Layer | Sample | S02 | S04 | S22 | S27 | S29 | S50 | S56 | S61 |
---|---|---|---|---|---|---|---|---|---|
Lower | Weight M1 (g) | 1.97 | 2.82 | 5.12 | 6.63 | 7.71 | 5.53 | 4.20 | 3.33 |
Layer-specified TOC 1 (wt.%) | 0.03 | 0.73 | 1.93 | 5.66 | 9.96 | 2.82 | 0.86 | 0.42 | |
Layer-specified S1 (mg/g) | 0.01 | 0.06 | 0.22 | 0.91 | 1.92 | 0.38 | 0.05 | 0.03 | |
Layer-specified S2 (mg/g) | 0.06 | 6.13 | 14.38 | 40.12 | 56.91 | 20.53 | 6.34 | 1.18 | |
Middle | Weight M2 (g) | 8.72 | 6.33 | 7.54 | 10.14 | 10.95 | 7.92 | 5.28 | 10.21 |
Layer-specified TOC (wt.%) | 0.20 | 1.33 | 2.53 | 7.54 | 13.72 | 3.91 | 1.00 | 1.42 | |
Layer-specified S1 (mg/g) | 0.02 | 0.10 | 0.27 | 1.05 | 2.58 | 0.44 | 0.06 | 0.07 | |
Layer-specified S2 (mg/g) | 0.30 | 11.40 | 18.58 | 58.80 | 80.67 | 28.44 | 7.24 | 3.88 | |
Upper | Weight M3 (g) | 8.65 | 10.45 | 6.63 | 2.73 | 1.13 | 4.75 | 9.85 | 3.80 |
Layer-specified TOC (wt.%) | 0.41 | 3.07 | 2.65 | 1.31 | 0.83 | 2.34 | 2.26 | 0.40 | |
Layer-specified S1 (mg/g) | 0.06 | 0.23 | 0.34 | 0.18 | 0.09 | 0.28 | 0.13 | 0.03 | |
Layer-specified S2 (mg/g) | 0.97 | 25.11 | 19.51 | 9.46 | 5.09 | 16.67 | 16.19 | 1.42 | |
Error | Cumulative TOC (wt.%) | 0.64 | 5.13 | 7.10 | 14.50 | 24.51 | 9.05 | 4.12 | 2.23 |
Whole-rock TOC (wt.%) | 0.65 | 5.36 | 7.07 | 14.50 | 24.40 | 8.68 | 4.06 | 2.14 | |
Analytical precision (%) | 1.72 | 4.29 | -0.47 | 0.00 | -0.44 | -4.26 | -1.67 | -4.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Liu, Z. Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process. Energies 2021, 14, 7191. https://doi.org/10.3390/en14217191
Jia J, Liu Z. Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process. Energies. 2021; 14(21):7191. https://doi.org/10.3390/en14217191
Chicago/Turabian StyleJia, Jianliang, and Zhaojun Liu. 2021. "Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process" Energies 14, no. 21: 7191. https://doi.org/10.3390/en14217191
APA StyleJia, J., & Liu, Z. (2021). Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process. Energies, 14(21), 7191. https://doi.org/10.3390/en14217191