Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece
Abstract
:1. Introduction
2. Overview of the Application of MCDM Methods to Site Selection for Solar Farm Deployment
3. Materials and Methods
3.1. Study Area
3.2. Identification of Criteria and Data Sources
3.2.1. Layers of Restrictions. Obtaining Feasible Sites
3.2.2. Assessment Criteria
Distance from Residential Areas (AC1)
Distance from Road Network (AC2)
Distance from the Existing High-Voltage Electricity Grid (AC3)
Solar Radiation (AC4)
Installation Site Area Limitation (AC5)
3.3. Multicriteria Decision Making
3.3.1. Analytical Hierarchy Process (AHP)
3.3.2. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
3.3.3. VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje)
3.3.4. PROMETHEE II (Preference Ranking Organization METHod for Enrichment of Evaluations)
4. Results and Discussion
4.1. Obtaining Feasible Sites
4.2. Assessment Criteria Weighting
4.3. Ranking the Feasible Sites
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
---|---|---|---|---|---|---|---|---|---|
AC1 (km) | 2~5 | 2~5 | 1~2 | 2~5 | 2~5 | 1~2 | 2~5 | 2~5 | 1~2 |
AC2 (km) | 1~3 | 1~3 | <1 | <1 | <1 | <1 | 1~3 | <1 | <1 |
AC3 (km) | >10 | >10 | <3 | <3 | <3 | <3 | 6~10 | 3~6 | <3 |
AC4 (kWh/m2) | 1801–1900 | 1801–1900 | 1801–1900 | 1801–1900 | 1801–1900 | 1801–1900 | 1801–1900 | 1801–1900 | 1801–1900 |
AC5 (acres) | 208 | 280 | 120 | 184 | 104 | 252 | 293 | 285 | 194 |
4.3.1. AHP Results
4.3.2. TOPSIS Results
4.3.3. VIKOR Results
4.3.4. PROMETHEE Results
4.3.5. Comparative Results of All Methods
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MCDM | References | Year of Publication | Aim/Scope | Location | Nature and Number of Assessment Criteria | Number of Alternatives (Outputfinal Results) |
---|---|---|---|---|---|---|
AHP | [21] | 2013 | suitable site selection for solar farms | Karapinar region, Konya/Turkey | Environmental (2), Economic (3) | land suitability index map |
[22] | 2015 | regional assessment of the suitability for wind farm and solar farm developments | South Central England, UK | Technical (2), Visual (2), Ecological (1), Economic (2) | wind and solar suitability maps | |
[10] | 2016 | land suitability for the optimal placement of photovoltaic solar power plants | Limassol district, Cyprus | Technical (3), Financial (1), Financial/Technical (2), Social (1) | suitability index map | |
[6] | 2019 | ideal sites to locate utility-scale wind and solar farms | Songkhla, Thailand | Physiographic (4), Environmental (5), Economical (3) | wind and solar suitability maps | |
[12] | 2019 | high priority sustainable siting areas for PV and CSP farms | Regional Unit of Rethymno, Greece | Environmental (3), Financia/Technical (6), Social (1) * | priority maps for PV and CSP farm siting | |
[13] | 2020 | optimal solar photovoltaic power plant sites | Malatya Province, Turkey | Environmental (3), Financial/Technical (6), Social (1) * | 34 suitable areas for the establishment of solar (PV) power plants | |
[23] | 2020 | site-suitability assessment of solar power plants | West Kalimantan Province, Indonesia | Climatology (3), topography (3), proximity to location (3) | highly suitable areas for the deployment of solar power plants under three approaches | |
[11] | 2021 | suitable sites for the installation of solar and wind farms | India | Technical (4), Socio-Environmental (5), Economic (4) | wind and solar farm suitability maps | |
[14] | 2021 | site-suitability for solar farm deployment | Desert of Chihuahua, Mexico | Environmental (1), Financial/Technical (9) * | solar suitability maps | |
[24] | 2021 | optimal sites for solar PV farms | Kahramanmaraş, Turkey | Geograply (3), Climate (4), Location (7) | solar suitability maps | |
[15] | 2021 | site suitability of solar PV | Riyadh region, Saudi Arabia | Climatology (2), Orography (2), Location (3) | solar suitability maps | |
TOPSIS | [25] | 2013 | avoid flood on solar power plant site selection | Thailand | Climate (4), Geographical (5), Transportation (4), Environment (3), Cost (3) | 3 sites |
[26] | 2015 | optimal sites to implant solar thermoelectric power plants | Murcia region, Spain | Environmental (1), Origraphy (3), Location (4), Climatology (2) | 33 alternatives | |
[17] | 2016 | best locations to build solar photovoltaic farms | Murcia region, Spain | Environmental (1), Origraphy (3), Location (4), Climatology (2) | 13 municipalities (numerous alternatives) | |
[18] | 2018 | select the most appropriate option for PV power plantinstallation | Iran | Social and cultural (1), Technological (6), Economic (1), Ecological (1), Political factors (2) | 4 alternatives | |
[19] | 2021 | development of photovoltaic energy production | Iran | Social barriers (3), Technical barriers (5), Economical barriers (9), Political barriers (3), Institutional barriers (3) | 6 solution alternatives | |
[27] | 2021 | optimal decision-making process in photovoltaic (PV) system location selection | Saudi Arabia | Climate (4), Location (4), Orography (2), Environmental (1) | 17 cities | |
VIKOR | [20] | 2019 | optimal site for solar PV power project development | Pakistan | Economic (4), Environmental (3), Social (3), Location (4), Climate (3), Orography (3) | 14 cities |
Appendix B
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
---|---|---|---|---|---|---|---|---|---|
S1 | 1 | 1 | 4 | 1 | 1 | 3 | 1 | 1 | 3 |
S2 | 1 | 1 | 4 | 1 | 2 | 3 | 1 | 1 | 3 |
S3 | 1/4 | 1/4 | 1 | 1/3 | 1/3 | 1 | 1/3 | 1/3 | 1 |
S4 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
S5 | 1 | 1/2 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
S6 | 1/3 | 1/3 | 1 | 1/3 | 1/3 | 1 | 1/3 | 1/3 | 1 |
S7 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
S8 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
S9 | 1/3 | 1/3 | 1 | 1/3 | 1/3 | 1 | 1/3 | 1/3 | 1 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
---|---|---|---|---|---|---|---|---|---|
S1 | 1 | 1 | 1/2 | 1/3 | 1/3 | 1/3 | 1 | 1/3 | 1/3 |
S2 | 1 | 1 | 1/3 | 1/2 | 1/3 | 1/3 | 1 | 1/2 | 1/2 |
S3 | 2 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
S4 | 3 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
S5 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
S6 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
S7 | 1 | 1 | 1/3 | 1/3 | 1/3 | 1/3 | 1 | 1/3 | 1/3 |
S8 | 3 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
S9 | 3 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
---|---|---|---|---|---|---|---|---|---|
S1 | 1 | 1 | 1/6 | 1/7 | 1/7 | 1/7 | 1/3 | 1/5 | 1/7 |
S2 | 1 | 1 | 1/7 | 1/7 | 1/7 | 1/7 | 1/3 | 1/5 | 1/6 |
S3 | 6 | 7 | 1 | 1 | 1 | 1 | 5 | 3 | 1 |
S4 | 7 | 7 | 1 | 1 | 1 | 1 | 5 | 3 | 1 |
S5 | 7 | 7 | 1 | 1 | 1 | 1 | 5 | 3 | 1 |
S6 | 7 | 7 | 1 | 1 | 1 | 1 | 5 | 3 | 1 |
S7 | 3 | 3 | 1/5 | 1/5 | 1/5 | 1/5 | 1 | 1/3 | 1/5 |
S8 | 5 | 5 | 1/3 | 1/3 | 1/3 | 1/3 | 3 | 1 | 1/3 |
S9 | 7 | 6 | 1 | 1 | 1 | 1 | 5 | 3 | 1 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
---|---|---|---|---|---|---|---|---|---|
S1 | 1 | 1/5 | 5 | 1 | 5 | 1 | 1/6 | 1/5 | 1 |
S2 | 5 | 1 | 9 | 5 | 9 | 5 | 1 | 1 | 5 |
S3 | 1/5 | 1/9 | 1 | 1/5 | 1 | 1/5 | 1/9 | 1/9 | 1/5 |
S4 | 1 | 1/5 | 5 | 1 | 5 | 1 | 1/6 | 1/5 | 1 |
S5 | 1/5 | 1/9 | 1 | 1/5 | 1 | 1/5 | 1/9 | 1/9 | 1/5 |
S6 | 1 | 1/5 | 5 | 1 | 5 | 1 | 1/5 | 1/5 | 1 |
S7 | 6 | 1 | 9 | 6 | 9 | 5 | 1 | 1 | 5 |
S8 | 5 | 1 | 9 | 5 | 9 | 5 | 1 | 1 | 5 |
S9 | 1 | 1/5 | 5 | 1 | 5 | 1 | 1/5 | 1/5 | 1 |
References
- EUROSTAT. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electrical_capacity_for_wind_and_solar_photovoltaic_power_-_statistics#Electricity_production_capacity_from_solar_energy_:_photovoltaic_was_the_most_important_technology (accessed on 19 October 2021).
- International Energy Agency (IEA). Available online: https://www.iea.org/reports/renewables-2020 (accessed on 19 October 2021).
- Hellenic Association of Photovoltaic Companies (HELAPCO). Available online: https://helapco.gr/pdf/Greek_PV_Market_Opportunities_Aug2019.pdf (accessed on 19 October 2021).
- International Renewable Energy Agency (IRENA). Available online: https://www.irena.org/solar (accessed on 19 October 2021).
- Bravo, J.D.; Casals, X.G.; Pascua, I.P. GIS approach to the definition of capacity and generation ceilings of renewable energy technologies. Energy Policy 2007, 35, 4879–4892. [Google Scholar] [CrossRef]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- Munkhbat, U.; Choi, Y. GIS-based site suitability analysis for solar power systems in Mongolia. Appl. Sci. 2021, 11, 3748. [Google Scholar] [CrossRef]
- Rigo, P.D.; Rediske, G.; Rosa, C.B.; Gastaldo, N.G.; Michels, L.; Neuenfeldt Júnior, A.L.; Siluk, J.C.M. Renewable energy problems: Exploring the methods to support the decision-making process. Sustainability 2020, 12, 10195. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; Socorro García-Cascales, M. Geographical information systems and multi-Criteria decision making methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Georgiou, A.; Skarlatos, D. Optimal site selection for sitting a solar park using multi-criteria decision analysis and geographical information systems. Geosci. Instrum. Method Data Syst. 2016, 5, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Saraswat, S.; Digalwar, A.K.; Yadav, S.; Kumar, G. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Giamalaki, M.; Tsoutsos, T. Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.A.; Pinedo-Alvarez, A.; Morales-Nieto, C.R.; Valles-Aragón, M.C.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. A regional GIS-assisted multi-criteria evaluation of site-suitability for the development of solar farms. Land 2021, 10, 217. [Google Scholar] [CrossRef]
- Albraheem, L.; Alabdulkarim, L. Geospatial analysis of solar energy in riyadh using a GIS-AHP-based technique. ISPRS Int. J. Geo-Inf. 2021, 10, 291. [Google Scholar] [CrossRef]
- Doukas, H.; Karakosta, C.; Psarras, J. Computing with words to assess the sustainability of renewable energy options. Expert Syst. Appl. 2010, 37, 5491–5497. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. J. Clean. Prod. 2016, 127, 387–398. [Google Scholar] [CrossRef]
- Alhuyi Nazari, M.; Aslani, A.; Ghasempour, R. Analysis of Solar Farm Site Selection Based on TOPSIS Approach. Int. J. Soc. Ecol. Sustain. Dev. 2018, 9, 12–25. [Google Scholar] [CrossRef]
- Ali Sadat, S.; Vakilalroaya Fini, M.; Hashemi-Dezaki, H.; Nazififard, M. Barrier analysis of solar PV energy development in the context of Iran using fuzzy AHP-TOPSIS method. Sustain. Energy Technol. Assess. 2021, 47, 101549. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Shah, S.A.A.; Zameer, H.; Ikram, M.; Saracoglu, B.O. Assessing the solar PV power project site selection in Pakistan: Based on AHP-fuzzy VIKOR approach. Environ. Sci. Pollut. Res. 2019, 26, 30286–30302. [Google Scholar] [CrossRef]
- Uyan, M. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Watson, J.; Malcolm, D.H. Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landsc. Urban Plan. 2015, 138, 20–31. [Google Scholar] [CrossRef]
- Ruiz, H.; Sunarso, A.; Ibrahim-Bathis, K.; Murti, S.; Budiarto, I. GIS-AHP multi criteria decision analysis for the optimal location of solar energy plants at Indonesia. Energy Rep. 2020, 6, 3249–3263. [Google Scholar] [CrossRef]
- Günen, M.A. A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey. Renew. Energy 2021, 178, 212–225. [Google Scholar] [CrossRef]
- Kengpol, A.; Rontlaong, P.; Tuominen, M. A decision support system for selection of solar power plant locations by applying fuzzy AHP and TOPSIS: An empirical study. J. Softw. Eng. Appl. 2013, 6, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Evaluation of suitable locations for the installation of solar thermoelectric power plant. Comput. Ind. Eng. 2015, 87, 343–355. [Google Scholar] [CrossRef]
- Al-Shammari, S.; Ko, W.; Al Ammar, E.A.; Alotaibi, M.A.; Choi, H.-J. Optimal decision-making in photovoltaic system selection in Saudi Arabia. Energies 2021, 14, 357. [Google Scholar] [CrossRef]
- Charabi, Y.; Gastli, A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew. Energy 2011, 36, 2554–2561. [Google Scholar] [CrossRef]
- Chen, C.R.; Huang, C.C.; Tsuei, H.J. A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection. Int. J. Photoenergy 2014, 2014, 925370. [Google Scholar] [CrossRef] [Green Version]
- Amjad, F.; Ali Shah, L. Identification and assessment of sites for solar farms development using GIS and density based clustering technique- A case of Pakistan. Renew. Energy 2020, 155, 761–769. [Google Scholar] [CrossRef]
- Hinestroza-Olascuaga, L.M.; Carvalho, P.M.S.; Cardoso de Jesus, C.M.S. Using a Multi-Criteria Model to Assess the Suitability of Potential Sites to Implement Off-Grid Solar PV Projects in South America. Sustainability 2021, 13, 7546. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://earth.google.com/ (accessed on 20 October 2021).
- Ministry of Environment, Energy and Climate Change (MEECC). Specific Framework for Spatial Planning and Sustainable Development for Renewable Energy Sources; JMD 49828/2008, OGHE B′ 2464/3-12-08; MEECC: Athens, Greece, 2008.
- Kereush, D.; Perovych, I. Determining criteria for optimal site selection for solar power plants. Geomat. Landmanag. Landsc. 2017, 4, 39–54. [Google Scholar] [CrossRef]
- Yousefi, H.; Hafeznia, H.; Yousefi-Sahzabi, A. Spatial site selection for solar power plants using a GIS-based boolean-fuzzy logic model: A case study of Markazi province, Iran. Energies 2018, 11, 1648. [Google Scholar] [CrossRef] [Green Version]
- Anwarzai, M.A.; Nagasaka, K. Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renew. Sustain. Energy Rev. 2017, 71, 150–160. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Antunes, C.H.; García-Cascales, M.S.; Dias, L.C. GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renew. Energy 2014, 66, 478–494. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Zoghi, M.; Ehsani, A.H.; Sadat, M.; Javad Amiri, M.; Karimi, S. Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN. Renew. Sustain. Energy Rev. 2015, 68, 986–996. [Google Scholar] [CrossRef]
- Fang, H.; Li, J.; Song, W. Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energy Convers. Manag. 2018, 174, 755–768. [Google Scholar] [CrossRef]
- Merrouni, A.A.; Elalaoui, E.F.; Mezrhab, A. Large scale PV sites selection by combining GIS and analytical hierarchy process, case study: Eastern Morocco. Renew. Energy 2018, 119, 863–873. [Google Scholar] [CrossRef]
- Effat, H.A. Selection of potential sites for solar energy farms in Ismailia governorate, Egypt using SRTM and multicriteria analysis. Int. J. Adv. Remote Sens. GIS 2013, 2, 205–220. [Google Scholar]
- Castillo, C.P.; Batista e Silva, F.; Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy 2016, 88, 86–99. [Google Scholar] [CrossRef]
- Majumdar, D.; Pasqualetti, M.J. Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA. Renew. Energy 2019, 134, 1213–1231. [Google Scholar] [CrossRef]
- Aly, A.; Jensen, S.S.; Pedersen, A.B. Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Rughooputh, S.D.D.V.; Boojhawon, R. Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renew. Energy 2019, 133, 1201–1219. [Google Scholar] [CrossRef]
- Open Geospatial Data and Services for Greece. Available online: http://geodata.gov.gr/ (accessed on 2 September 2021).
- Nikitidou, E.; Kazantzidis, A.; Tzoumanikas, P.; Salamalikis, V.; Bais, A.F. Retrieval of surface solar irradiance, based on satellite-derived cloud in-formation, in Greece. Renew. Energy 2015, 90, 776–783. [Google Scholar] [CrossRef]
- Independent Power Transmission Generation. Available online: https://www.admie.gr/en/grid/description/lines-map (accessed on 2 September 2021).
- Corine Land Cover 2018. Available online: http://mapsportal.ypen.gr/layers/geonode:gr_clc2018 (accessed on 2 September 2021).
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Modell. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In Multiple Criteria Decision Analysis: State of the Art Surveys; José, F., Salvatore, G., Matthias, E., Eds.; Springer: New York, NY, USA, 2005; pp. 345–405. [Google Scholar]
- Hwang, C.L.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making: Lecture Notes in Economics and Mathematical Systems, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, pp. 58–191. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Kozlov, V.; Nosov, V.; Sałabun, W. Efficiency of methods for determining the relevance of criteria in sustainable transport problems: A comparative case study. Sustainability 2020, 12, 7915. [Google Scholar] [CrossRef]
- Brans, J.P. L’ingénièrie de la decision. Elaboration d’instruments d’aide à la décision. La méthode PROMETHEE. In l’Aide à la Décision: Nature, Instruments et Perspectives d’Avenir; Nadeau, R., Landry, M., Eds.; Presses de l’Université Laval: Ville de Québec, QC, Canada, 1982; pp. 183–213. [Google Scholar]
- Vincke, J.P.; Brans, P. A preference ranking organization method. The PROMETHEE method for MCDM. Manag. Sci. 1985, 31, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The PROMETHEE method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Vagiona, D.; Karanikolas, N. A multicriteria approach to evaluate offshore wind farms siting in Greece. Glob. Nest. J. 2012, 14, 235–243. [Google Scholar] [CrossRef]
- Vasileiou, Μ.; Loukogeorgaki, Ε.; Vagiona, D. GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renew. Sust. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Vagiona, D.G.; Kamilakis, M. Sustainable site selection for offshore wind farms in the South Aegean—Greece. Sustainability 2018, 10, 749. [Google Scholar] [CrossRef] [Green Version]
- Bili, A.; Vagiona, D. Use of multicriteria analysis and GIS for selecting sites for onshore wind farms: The case of Andros island (Greece). Eur. J. Environ. Sci. 2018, 8, 5–13. [Google Scholar] [CrossRef]
- Bily, A.; Vagiona, D. Site selection of hybrid solar/wind renewable energy systems: A case study from Andros, Greece. In Proceedings of the 16th International Conference on Environmental Science and Technology (CEST 2019), Rhodes Island, Greece, 4–7 September 2019. [Google Scholar]
- Spyridonidou, S.; Sismani, G.; Loukogeorgaki, E.; Vagiona, D.G.; Ulanovsky, H.; Madar, D. Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach. Energies 2021, 14, 551. [Google Scholar] [CrossRef]
- Doljak, D.; Stanojević, G. Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy 2017, 127, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Roy, B. Decision-Aiding Today: What Should We Expect? In Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications; Gal, T., Stewart, T.J., Hanne, T., Eds.; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 1999; pp. 1–35. ISBN 978-1-4613-7283-7. [Google Scholar]
- Deshmukh, S.C. Preference ranking organization method of enrichment evaluation (Promethee). Int. J. Eng. Sci. Invent. 2013, 2, 28–34. [Google Scholar]
- Ziemba, P. Multi-criteria stochastic selection of electric vehicles for the sustainable development of local government and state administration units in Poland. Energies 2020, 13, 6299. [Google Scholar] [CrossRef]
- Kaya, I.; Çolak, M.; Terzi, F. Use of MCDM techniques for energy policy and decision-making problems: A review. Int. J. Energy Res. 2018, 42, 2344–2372. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review. Energies 2020, 13, 1164. [Google Scholar] [CrossRef] [Green Version]
- Siksnelyte, I.; Zavadskas, E.K.; Streimikiene, D.; Sharma, D. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 2018, 11, 2754. [Google Scholar] [CrossRef] [Green Version]
- Ishizaka, A.; Lusti, M. How to derive priorities in AHP: A comparative study. Cent. Eur. J. Oper. Res. 2006, 14, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-criteria group assessment of E-commerce websites based on the new PROSA GDSS method–The case of Poland. IEEE Access 2021, 9, 126595–126609. [Google Scholar] [CrossRef]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. An extension of best-worst method with D numbers: Application in evaluation of renewable energy resources. Sustain. Energy Technol. Assess. 2020, 40, 100771. [Google Scholar] [CrossRef]
N. | Denomination of the Restrictions |
---|---|
EC1 | Land cover |
EC2 | Distance from protected areas |
EC3 | Altitude |
EC4 | Distance from airports |
EC5 | Distance from archaeological areas |
EC6 | Installation site area limitations |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
AC1 | AC2 | AC3 | AC5 | Priority Weight | |
---|---|---|---|---|---|
AC1 | 1 | 1/5 | 1/5 | 1 | 0.083 |
AC2 | 5 | 1 | 1 | 5 | 0.417 |
AC3 | 5 | 1 | 1 | 5 | 0.417 |
AC5 | 1 | 1/5 | 1/5 | 1 | 0.083 |
Criterion | Measurement | Class | Value |
---|---|---|---|
AC1 (km) | <1 | suitable | 1 |
1~2 | moderate suitable | 2 | |
2~5 | high suitable | 3 | |
>5 | extremely suitable | 4 | |
AC2 (km) | <1 | extremely suitable | 4 |
1~3 | high suitable | 3 | |
3~5 | moderate suitable | 2 | |
>5 | suitable | 1 | |
AC3 (km) | <3 | extremely suitable | 4 |
3~6 | high suitable | 3 | |
6~10 | moderate suitable | 2 | |
>10 | suitable | 1 | |
AC5 (acres) | 100~180 | suitable | 1 |
180~260 | moderate suitable | 2 | |
260~320 | high suitable | 3 | |
320~500 | extremely suitable | 4 |
AC1 | AC2 | AC3 | AC5 | |
---|---|---|---|---|
S1 | 0.146 | 0.051 | 0.022 | 0.061 |
S2 | 0.160 | 0.056 | 0.022 | 0.236 |
S3 | 0.044 | 0.139 | 0.167 | 0.018 |
S4 | 0.141 | 0.139 | 0.169 | 0.061 |
S5 | 0.132 | 0.145 | 0.169 | 0.018 |
S6 | 0.047 | 0.145 | 0.169 | 0.062 |
S7 | 0.141 | 0.048 | 0.040 | 0.247 |
S8 | 0.141 | 0.139 | 0.075 | 0.236 |
S9 | 0.047 | 0.139 | 0.167 | 0.062 |
Feasible Site | Preference Percentage (%) | Ranking |
---|---|---|
S1 | 4.75% | 9 |
S2 | 6.54% | 8 |
S3 | 13.27% | 5 |
S4 | 14.51% | 1 |
S5 | 14.35% | 2 |
S6 | 14.00% | 3 |
S7 | 6.92% | 7 |
S8 | 12.04% | 6 |
S9 | 13.63% | 4 |
Feasible Site | Si+ | Si− | Ci |
---|---|---|---|
S1 | 0.011 | 0.135 | 0.927 |
S2 | 0.002 | 0.136 | 0.988 |
S3 | 0.136 | 0.002 | 0.014 |
S4 | 0.134 | 0.014 | 0.096 |
S5 | 0.136 | 0.010 | 0.070 |
S6 | 0.134 | 0.018 | 0.121 |
S7 | 0.043 | 0.097 | 0.694 |
S8 | 0.093 | 0.049 | 0.346 |
S9 | 0.135 | 0.011 | 0.077 |
Feasible Site | Si | Ri | Qi |
---|---|---|---|
S1 | 0.037 | 0.037 | 0.055 |
S2 | 0.006 | 0.006 | 0.000 |
S3 | 0.993 | 0.417 | 1.000 |
S4 | 0.881 | 0.417 | 0.944 |
S5 | 0.917 | 0.417 | 0.961 |
S6 | 0.935 | 0.417 | 0.971 |
S7 | 0.139 | 0.139 | 0.229 |
S8 | 0.698 | 0.417 | 0.851 |
S9 | 0.960 | 0.417 | 0.983 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |
---|---|---|---|---|---|---|---|---|---|
S1 | 0.000 | 1.000 | 0.833 | 0.917 | 0.917 | 0.417 | 0.833 | 0.917 | |
S2 | 0.083 | 1.000 | 0.917 | 0.917 | 1.000 | 0.417 | 0.833 | 1.000 | |
S3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
S4 | 0.000 | 0.000 | 0.167 | 0.083 | 0.083 | 0.000 | 0.000 | 0.083 | |
S5 | 0.000 | 0.000 | 0.083 | 0.000 | 0.083 | 0.000 | 0.000 | 0.083 | |
S6 | 0.000 | 0.000 | 0.083 | 0.000 | 0.083 | 0.000 | 0.000 | 0.000 | |
S7 | 0.083 | 0.000 | 1.000 | 0.917 | 0.917 | 1.000 | 0.833 | 1.000 | |
S8 | 0.083 | 0.000 | 0.167 | 0.500 | 0.500 | 0.583 | 0.000 | 0.583 | |
S9 | 0.000 | 0.000 | 0.083 | 0.000 | 0.083 | 0.000 | 0.000 | 0.000 |
Φ+ | Φ− | Φ(α) | |
---|---|---|---|
S1 | 0.729 | 0.031 | 0.698 |
S2 | 0.771 | 0.000 | 0.771 |
S3 | 0.000 | 0.448 | −0.448 |
S4 | 0.052 | 0.396 | −0.344 |
S5 | 0.031 | 0.438 | −0.406 |
S6 | 0.021 | 0.458 | −0.438 |
S7 | 0.719 | 0.104 | 0.615 |
S8 | 0.302 | 0.313 | −0.010 |
S9 | 0.021 | 0.458 | −0.438 |
TOPSIS | VIKOR | PROMETHEEE | |
---|---|---|---|
AHP | −0.56 | −0.39 | −0.39 |
TOPSIS | 0.83 | 0.83 | |
VIKOR | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagiona, D.G. Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece. Energies 2021, 14, 8371. https://doi.org/10.3390/en14248371
Vagiona DG. Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece. Energies. 2021; 14(24):8371. https://doi.org/10.3390/en14248371
Chicago/Turabian StyleVagiona, Dimitra G. 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece" Energies 14, no. 24: 8371. https://doi.org/10.3390/en14248371
APA StyleVagiona, D. G. (2021). Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece. Energies, 14(24), 8371. https://doi.org/10.3390/en14248371