Impact of Clean Energy on CO2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries
Abstract
:1. Introduction
2. Review of the Literature
3. Data and Methodology
3.1. Data Description
3.2. Methodology
4. Empirical Results
4.1. Granger Causality
4.2. Impulse Response Functions
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Variables | Full Sample | Formative Phase | Expansion Phase | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Levels | Diff | Decision | Levels | Diff | Decision | Levels | Diff | Decision | ||
France | CO2 | −2.476 | −2.787 * | I(1) | −1.975 (c+t) | −3.411 (c+t) ** | I(1) | −1.41 (c+t) | −2.565 (c) ** | I(1) |
RES | −0.561 | −1.710 | I(1) | −0.791 (c+t) | −3.436 (c+t) ** | I(1) | −1.052 (c+t) | −1.962 (c) ** | I(1) | |
NUC | −1.301 | −1.515 | I(1) | −1.219 (c+t) | −1.756 (c) * | I(1) | −1.266 (c+t) | −3.466 (c) *** | I(1) | |
NRES | 0.354 | −1.884 * | I(1) | −2.167 (c+t) | −3.908 (c+t) *** | I(1) | −1.472 (c+t) | −2.592 (c) ** | I(1) | |
GDP | −1.896 | −2.689 * | I(1) | −2.172 (c+t) | −2.377 (c+t) | I(1) | −1.632 (c+t) | −3.255 (c+t) ** | I(1) | |
Spain | CO2 | −0.829 (c+t) | −3.631 (c) *** | I(1) | −1.267 (c+t) | −3.253 (c) *** | I(1) | −0.929 (c+t) | −3.103 (c+t) ** | I(1) |
RES | −0.833 (c+t) | −2.37 (c) ** | I(1) | −1.303 (c+t) | −2.932 (c) *** | I(1) | −1.528 (c+t) | −1.959 (c) ** | I(1) | |
NUC | −2.299 (c+t) | −2.367 (c) ** | I(1) | −1.958 (c+t) | −1.800 (c) * | I(1) | −1.692 (c+t) | −1.764 (c) * | I(1) | |
NRES | −1.002 (c+t) | −2.819 (c) *** | I(1) | −1.403 (c+t) | −2.514 (c) ** | 1(1) | −1.03 (c+t) | −1.671 (c) * | I(1) | |
GDP | −3.396 (c) *** | −2.679 (c) *** | I(1) | −1.12 (c+t) | −2.18 (c) ** | I(1) | −1.791 (c+t) | −2.862 (c) *** | I(1) | |
Sweden | CO2 | −2.442 (c+t) | −2.976 (c+t) ** | I(1) | −2.001 (c+t) | −2.435 (c) ** | I(1) | −0.955 (c+t) | −4.472 (c) *** | I(1) |
RES | −1.192 (c+t) | −3.911 (c+t) *** | I(1) | −1.267 (c+t) | −2.387 (c) ** | I(1) | −0.38 (c+t) | −4.453 (c+t) *** | I(1) | |
NUC | −0.412 (c+t) | −3.066 (c) *** | I(1) | −1.159 (c+t) | −3.036 (c) *** | I(1) | −1.511 (c+t) | −2.759 (c) *** | I(1) | |
NRES | −3.345 (c+t) ** | −3.21 (c+t) ** | I(0) | −1.927 (c+t) | −2.521 (c) ** | I(1) | −0.95 (c+t) | −4.374 (c) *** | I(1) | |
GDP | −3.016 (c+t) ** | −2.153 | I(0) | −2.383 (c+t) | −2.821 (c+t) * | I(1) | −1.19 (c+t) | −5.467 (c) *** | I(1) |
Dependent Variables | Formative Phase | Expansion Phase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Causes | ||||||||||
CO2 | RES | NUC | NRES | GDP | CO2 | RES | NUC | NRES | GDP | |
CO2 | - | 10.49 * | 4.38 | 16.67 *** | 12.34 ** | - | 1.27 | 8.11 ** | 2.39 | 2.88 |
RES | 9.55 | - | 0.85 | 8.01 | 4.10 | 8.25 ** | - | 1.71 | 6.28 * | 1.61 |
NUC | 9.13 | 3.97 | - | 5.27 | 2.47 | 7.18 * | 3.35 | - | 7.58 * | 7.15 * |
N-RES | 11.74 * | 7.31 | 2.36 | - | 10.7 * | 3.42 | 0.77 | 7.57 * | - | 2.45 |
GDP | 0.49 | 23.37 *** | 6.67 | 3.65 | - | 7.14 * | 5.35 | 10.37 ** | 6.62 * | - |
Residual Diagnostics | ||||||||||
JB test: | 13.84 *** | 43.6 *** | 19.9 *** | 8.03 ** | 8.23 ** | 1.65 | 1.29 | 0.81 | 3.3 | 1.66 |
Skewness (Chi-sq) | 0.65 | 0.99 | 2.49 | 1.42 | 0.20 | 0.9 | 5.05 ** | 0.006 | 10.9 *** | 2.62 |
Kurtosis (Chi-sq) | 13.19 *** | 42.6 *** | 17.4 *** | 6.6 ** | 8.03 *** | 2.55 | 6.34 ** | 0.82 | 14.2 *** | 4.28 |
LM test For 2 lag | 27.42 | 37.58 |
Dependent Variables | Formative Phase | Expansion Phase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Causes | ||||||||||
CO2 | RES | NUC | NRES | GDP | CO2 | RES | NUC | NRES | GDP | |
CO2 | - | 0.506 | 1.045 | 2.872 | 0.78 | - | 3.388 | 0.704 | 0.128 | 6.111 *** |
RES | 4.347 * | - | 7.527 ** | 3.229 | 2.175 | 12.78 *** | - | 1.581 | 15.19 *** | 5.998 ** |
NUC | 2.947 | 0.79 | - | 2.115 | 2.55 | 6.642 ** | 0.118 | - | 4.291 * | 0.75 |
N-RES | 3.028 | 0.409 | 1.096 | - | 0.806 | 0.599 | 4.659 * | 0.762 | - | 6.157 ** |
GDP | 1.863 | 0.655 | 0.791 | 1.715 | - | 0.179 | 17.13 *** | 0.859 | 0.056 | - |
Residual Diagnostics | ||||||||||
JB test | 4.309 | 1.102 | 4.347 | 2.499 | 10.13 *** | 5.745 | 6.641 ** | 4.616 | 36.20 *** | 30.02 *** |
Skewness (Chi-sq) | 0.021 | 0.608 | 3.426 | 0.671 | 0.012 | 0.011 | 3.227 | 0.592 | 1.797 | 0.418 |
Kurtosis (Chi-sq) | 4.289 ** | 0.493 | 0.922 | 1.828 | 10.11 *** | 5.73 ** | 3.414 | 4.024 ** | 34.41 *** | 29.6 *** |
LM test (for 2 lag) | 0.249 | 0.644 |
Dependent Variables | Formative Phase | Expansion Phase | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Causes | ||||||||||
CO2 | RES | NUC | NRES | GDP | CO2 | RES | NUC | NRES | GDP | |
CO2 | - | 1.069 | 0.053 | 1.602 | 2.821 | - | 0.42 | 3.114 | 1.57 | 0.339 |
RES | 0.810 | - | 0.050 | 1.001 | 0.682 | 0.004 | - | 0.549 | 0.041 | 0.160 |
NUC | 0.444 | 1.808 | - | 0.368 | 2.130 | 1.505 | 0.681 | - | 1.195 | 0.144 |
N-RES | 0.821 | 1.098 | 0.049 | - | 3.056 | 2.249 | 0.224 | 2.988 | - | 0.149 |
GDP | 1.339 | 0.468 | 0.385 | 1.728 | - | 0.082 | 1.578 | 0.825 | 0.148 | - |
Residual Diagnostics | ||||||||||
JB test | 21.01 *** | 19.14 *** | 5.71 * | 2.161 | 22.57 *** | 0.999 | 19.71 *** | 24.42 *** | 0.771 | 39.06 *** |
Skewness (Chi-sq) | 3.056 | 0.994 | 2.011 | 0.675 | 1.309 | 0.001 | 2.462 | 0.101 | 0.285 | 2.847 * |
Kurtosis (Chi-sq) | 17.96 *** | 18.15 *** | 3.699 * | 1.486 | 21.26 *** | 0.998 | 17.25 *** | 24.31 *** | 0.486 | 36.21 *** |
LM test (for 2 lag) | 0.321 | 0.326 |
Formative Phase | Expansion Phase | |||
---|---|---|---|---|
LR Stats | p-Value | LR Stats | p-Value | |
France | ||||
CO2 | 56.26 *** | 0.000 | 26.958 *** | 0.008 |
RES | 51.958 *** | 0.001 | 17.828 | 0.121 |
NUC | 26.248 | 0.341 | 21.390 ** | 0.045 |
N-RES | 59.94 *** | 0.000 | 24.280 ** | 0.019 |
GDP | 31.35 | 0.144 | 15.460 | 0.217 |
Spain | ||||
CO2 | 6.312 | 0.612 | 17.096 ** | 0.029 |
RES | 14.778 * | 0.064 | 26.186 *** | 0.001 |
NUC | 7.166 | 0.519 | 14.502 * | 0.070 |
N-RES | 6.318 | 0.612 | 17.034 ** | 0.030 |
GDP | 4.836 | 0.775 | 23.530 *** | 0.003 |
Sweden | ||||
CO2 | 3.408 | 0.906 | 6.378 | 0.605 |
RES | 5.518 | 0.701 | 3.890 | 0.867 |
NUC | 1.908 | 0.984 | 5.052 | 0.752 |
N-RES | 4.384 | 0.821 | 4.690 | 0.790 |
GDP | 7.834 | 0.450 | 3.634 | 0.889 |
References
- Intergovernmental Panel on Climate Change. Mitigation of Climate Change: Energy Systems. Fifth Assessment Report; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Summary for Policymakers of IPCC Special Report on Global Warming of 1.5°C Approved by Governments; IPCC. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 30 November 2020).
- European Commission. Daily News. 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/mex_20_2389 (accessed on 28 December 2020).
- International Energy Agency. World Energy Outlook 2017; IEA: Paris, France, 2017; Available online: https://www.iea.org/reports/world-energy-outlook-2017 (accessed on 20 November 2020).
- Vavrek, R.; Chovancová, J. Decoupling of greenhouse gas emissions from economic growth in V4 countries. Procedia Econ. Financ. 2016, 39, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Handrich, L.; Kemfert, C.; Mattes, A.; Pavel, F.; Traber, T. Turning Point: Decoupling Greenhouse Gas Emissions From Economic Growth; Heinrich-Böll-Stiftung: Berlin, Germnay, 2015. [Google Scholar]
- Fang, J.; Chen, J.C. Empirical Analysis of CO2 emissions and GDP relationships in OECD countries. In Proceedings of the Developing and Delivering Affordable Energy in the 21st Century, 27th USAEE/IAEE North American Conference, Huston, TX, USA, 16–19 September 2007. [Google Scholar]
- Richmond, A.K.; Kaufmann, R.K. Is there a turning point in the relationship between income and energy use and/or carbon emissions? Ecol. Econ. 2006, 56, 176–189. [Google Scholar] [CrossRef]
- Berahab, R. Decoupling Economic Growth from CO2 Emissions in the World; Policy Notes & Policy Briefs, 1727, Policy Center for the New South. 2017. Available online: https://ideas.repec.org/p/ocp/ppaper/pb-1727.html (accessed on 20 January 2021).
- Choi, E.; Heshmati, A.; Cho, Y. An empirical study of the relationships between CO2 emissions, economic growth and openness. J. Environ. Policy 2010, 10, 10. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Clark, B. Are the economy and the environment decoupling? a comparative international study, 1960–2005. Am. J. Sociol. 2012, 118, 1–44. [Google Scholar] [CrossRef]
- Mikayilov, J.I.; Hasanov, F.J.; Galeotti, M. Decoupling of CO2 emissions and GDP: A time-varying cointegration approach. Ecol. Indic. 2018, 95, 615–628. [Google Scholar] [CrossRef]
- Piłatowska, M.; Włodarczyk, A. Decoupling economic growth from carbon dioxide emissions in the EU countries. Montenegrin J. Econ. 1992, 14, 7–26. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Kowalski, M.; Swilling, M. Decoupling Environmental Resource Use and Economic Growth Summary; United Nations Environment Programme: Nairobi, Kenya, 2011. [Google Scholar]
- Organisation for Economic Co-operation and Development. Fostering Innovation for Green Growth—OECD 2011. Available online: https://www.oecd.org/sti/inno/fosteringinnovationforgreengrowth.htm (accessed on 28 January 2020).
- Weizsäcker, E.U.; de Larderel, J.; Hargroves, K.; Hudson, C.; Smith, M.; Rodrigues, M. Decoupling 2 Technologies, Opportunities and Policy Options; United Nations Environment Programme: Nairobi, Kenya, 2014. [Google Scholar]
- International Energy Agency. WEO-2015 Special Report: Energy and Climate Change—Analysis; IEA: Paris, France, 2015; Available online: https://www.iea.org/report/energy-and-cimate-change (accessed on 20 November 2020).
- Jaforullah, M.; King, A. Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence. Energy Econ. 2015, 49, 711–717. [Google Scholar] [CrossRef]
- Jin, T.Y.; Kim, J. What is better for mitigating carbon emissions—Renewable energy or nuclear energy? A panel data analysis. Renew. Sustain. Energy Rev. 2018, 91, 464–471. [Google Scholar] [CrossRef]
- Ferguson, C.D. Nuclear Energy: Balancing Benefits and Risks; Council on Foreign Relations Press: New York, NY, USA, 2007. [Google Scholar]
- Adamantiades, A.; Kessides, I. Nuclear power for sustainable development: Current status and future prospects. Energy Policy 2009, 37, 5149–5166. [Google Scholar] [CrossRef]
- Amano, Y. Atoms for Peace and Development. IAEA Bulletin, March 2018. Available online: https://www.iaea.org/bulletin/59-1 (accessed on 25 November 2020).
- Kunsch, P.L.; Friesewinkel, J. Nuclear energy policy in Belgium after Fukushima. Energy Policy 2014, 66, 462–474. [Google Scholar] [CrossRef]
- De Brauwer, C.R.S.; Ellis, G.; Chateau, Z.; Wade, R.; Johnston, N.; Volkomer, S.A.; Luga, C.D. Renewables 2020. In Global Status Report 2020; Mastny, L., Ed.; REN21 Secretariat: Paris, France, 2020. [Google Scholar]
- York, R.; McGee, J. Does renewable energy development decouple economic growth from CO2 emissions? Socius Sociol. Res. Dyn. World 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Jacobsson, S.; Berherk, A. Transforming the energy sector: The evolution of technological systems in renewable energy technology. Ind. Corp. Chang. 2004, 13, 815–849. [Google Scholar] [CrossRef]
- Jacobsson, S.; Lauber, V. The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 2006, 34, 256–276. [Google Scholar] [CrossRef]
- Napp, T.; Bernie, D.; Thomas, R.; Lowe, J.; Hawkes, A.; Gambhir, A. Exploring the feasibility of low-carbon scenarios using historical energy transitions analysis. Energies 2017, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Fosten, J.; Morley, B.; Taylor, T. Dynamic misspecification in the environmental Kuznets curve: Evidence from CO2 and SO2 emissions in the United Kingdom. Ecol. Econ. 2012, 76, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; Hess, D.J.; Amir, S.; Geels, F.W.; Hirsh, R.; Medina, L.R.; Miller, C.; Palavicino, C.A.; Phadke, R.; Ryghaug, M.; et al. Sociotechnical agendas: Reviewing future directions for energy and climate research. Energy Res. Soc. Sci. 2020, 70, 101617. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I.T. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 2010, 35, 5412–5420. [Google Scholar] [CrossRef]
- Magazzino, C. The relationship between CO2 emissions, energy consumption and economic growth in Italy. Int. J. Sustain. Energy 2014, 35, 844–857. [Google Scholar] [CrossRef]
- Mercan, M.; Karakaya, E. Energy consumption, economic growth and carbon emission: Dynamic panel cointegration analysis for selected OECD countries. Procedia Econ. Finance 2015, 23, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 2011, 31, 1793–1806. [Google Scholar]
- Omri, A. An international literature survey on energy-economic growth nexus: Evidence from country-specific studies. Renew. Sustain. Energy Rev. 2014, 38, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Waheed, R.; Sarwar, S.; Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Zafrilla, J.E.; Cadarso, M.; Monsalve, F.; De La Rua, C. How carbon-friendly is nuclear energy? A hybrid MRIO-LCA model of a Spanish facility. Environ. Sci. Technol. 2014, 48, 14103–14111. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Churchill, S.A.; Paramati, S.R. The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renew. Energy 2017, 111, 157–167. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Baek, J.; Pride, D. On the income–nuclear energy–CO2 emissions nexus revisited. Energy Econ. 2014, 43, 6–10. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Soares, I.; Pinho, C. The impact of renewable energy sources on economic growth and CO2 emissions—A SVAR approach. Eur. Res. Stud. J. 2012, 15, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Mert, M.; Bölük, G. Do foreign direct investment and renewable energy consumption affect the CO2 emissions? New evidence from a panel ARDL approach to Kyoto Annex countries. Environ. Sci. Pollut. Res. 2016, 23, 21669–21681. [Google Scholar] [CrossRef] [PubMed]
- Bulut, U. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey. Environ. Sci. Pollut. Res. 2017, 24, 15416–15426. [Google Scholar] [CrossRef]
- Xu, B.; Chen, Y.F.; Shen, X.B. Clean energy development, carbon dioxide emission reduction and regional economic growth. Econ. Res. J. 2019, 54, 188–202. [Google Scholar]
- Han, D.; Li, T.; Feng, S.; Shi, Z. Application of threshold regression analysis to study the impact of clean energy development on China’s carbon productivity. Int. J. Environ. Res. Public Health 2020, 17, 1060. [Google Scholar] [CrossRef] [Green Version]
- Luqman, M.; Ahmad, N.; Bakhsh, K. Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model. Renew. Energy 2019, 139, 1299–1309. [Google Scholar] [CrossRef]
- Mbarek, M.B.; Khairallah, R.; Feki, R. Causality relationships between renewable energy, nuclear energy and economic growth in France. Environ. Syst. Decis. 2015, 35, 133–142. [Google Scholar] [CrossRef]
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef]
- Chien, T.; Hu, J.-L. Renewable energy and macroeconomic efficiency of OECD and non-OECD economies. Energy Policy 2007, 35, 3606–3615. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Ocal, O.; Aslan, A. Renewable energy consumption–economic growth nexus in Turkey. Renew. Sustain. Energy Rev. 2013, 28, 494–499. [Google Scholar] [CrossRef]
- Rahman, S.-U.; Chen, S.; Saud, S.; Bano, S.; Haseeb, A. The nexus between financial development, globalization, and environmental degradation: Fresh evidence from Central and Eastern European Countries. Environ. Sci. Pollut. Res. 2019, 26, 24733–24747. [Google Scholar] [CrossRef]
- Menegaki, N.A. Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis. Energy Econ. 2011, 33, 257–263. [Google Scholar] [CrossRef]
- Simionescu, M.; Bilan, Y.; Krajňáková, E.; Streimikiene, D.; Gędek, S. Renewable energy in the electricity sector and GDP per capita in the european union. Energies 2019, 12, 2520. [Google Scholar] [CrossRef] [Green Version]
- Le, T.-H.; Chang, Y.; Park, D. Renewable and nonrenewable energy consumption, economic growth, and emissions: International evidence. Energy J. 2020, 41. [Google Scholar] [CrossRef]
- Bhat, J.A. Renewable and non-renewable energy consumption—impact on economic growth and CO2 emissions in five emerging market economies. Environ. Sci. Pollut. Res. 2018, 25, 35515–35530. [Google Scholar] [CrossRef]
- Tiwari, A.K. Comparative performance of renewable and nonrenewable energy source on economic growth and CO2 emissions of Europe and Eurasian countries: A PVAR approach. Econ. Bull. 2011, 31, 2356–2372. [Google Scholar]
- Chang, T.-H.; Huang, C.-M.; Lee, M.-C. Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries. Energy Policy 2009, 37, 5796–5802. [Google Scholar] [CrossRef]
- Chen, C.; Pinar, M.; Stengos, T. Renewable energy consumption and economic growth nexus: Evidence from a threshold model. Energy Policy 2020, 139, 111295. [Google Scholar] [CrossRef]
- Piłatowska, M.; Geise, A.; Włodarczyk, A. The effect of renewable and nuclear energy consumption on decoupling economic growth from CO2 emissions in Spain. Energies 2020, 13, 2124. [Google Scholar] [CrossRef]
- Tugcu, C.T.; Topcu, M. Total, renewable and non-renewable energy consumption and economic growth: Revisiting the issue with an asymmetric point of view. Energy 2018, 152, 64–74. [Google Scholar] [CrossRef]
- Bento, N.; Wilson, C.; Anadon, L.D. Time to get ready: Conceptualizing the temporal and spatial dynamics of formative phases for energy technologies. Energy Policy 2018, 119, 282–293. [Google Scholar] [CrossRef]
- Bloomberg, N.E.F.; Energy Transition Investment Trends. Tracking Global Investments in Low-Carbon Energy Transition. 2021. Available online: https://about.bnef.com/energy-transition-investment/ (accessed on 20 January 2021).
- Juselius, K.; MacDonald, R. Interest Rate and Price Linkages Between the USA and Japan: Evidence from the Post-Bretton Woods Period; University of Copenhagen: Copengahen, Denmark, 2000. [Google Scholar]
- Tahir, A.; Ahmed, J.; Ahmed, W. Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries. SBP Working Paper Series 97, State Bank of Pakistan, Research Department. 2018. Available online: https://ideas.repec.org/p/sbp/wpaper/97.html (accessed on 20 January 2021).
- Banet, C.; Wettestad, J. Why is “nuclear France” going renewable? The development of political organizational and European fields. In Proceedings of the ECPR Conference, Oslo, Norway, 6–9 September 2017. [Google Scholar]
- Boasson, E.L.; Leiren, M.D.; Wettestad, J. Comparative renewables policy. In Political, Organizational and European Fields; Routledge: London, UK, 2020. [Google Scholar]
- Bellona.org. 2020. Available online: https://bellona.org/news/nuclear-issues/2020-03-france-begins-winding-down-its-reliance-on-nuclear-power (accessed on 25 November 2020).
- World Nuclear News. 2020. Available online: https://world-nuclear-news.org/Articles/New-nuclear-will-ensure-Frances-energy-security-SF (accessed on 25 November 2020).
- Meyer, N.I. Learning from wind energy policy in the EU: Lessons from Denmark, Sweden and Spain. Eur. Environ. 2007, 17, 347–362. [Google Scholar] [CrossRef]
- Pesaran, H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Hatemi-J, A.; Irandoust, M. Time-series evidence for Balassa’s export-led growth hypothesis. J. Int. Trade Econ. Dev. 2000, 9, 355–365. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Policies of IEA Countries: Sweden 2019 Review; IEA: Paris, France, 2019. [Google Scholar]
- Woolard, J. Beyond Renewables: How to Reduce Energy-Related Emissions by Measuring What Matters. 2019. Available online: https://www.wri.org/news/beyond-renewables-how-reduce-energy-related-emissions-measuring-what-matters (accessed on 29 December 2020).
- International Energy Agency; International Renewable Energy Agency. Perspectives for the Energy Transition: Investment Needs for a Low-Carbon Energy System; IEA: Paris, France, 2017; Available online: https://www.iea.org/reports/investment-needs-for-a-low-carbon-energy-system (accessed on 5 December 2020).
- International Energy Agency. European Union 2020. In Energy Policy Review; IEA: Paris, France, 2020; Available online: https://www.iea.org/reports/european-union-2020 (accessed on 20 January 2021).
- International Energy Agency. World Energy Outlook 2020; IEA: Paris, France, 2020; Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 20 January 2021).
Country | 2004 | 2015 | 2016 | 2017 | 2018 | 2020 Target |
---|---|---|---|---|---|---|
France | 9.5 | 15.0 | 15.7 | 16.0 | 16.6 | 23 |
Spain | 8.3 | 16.2 | 17.4 | 17.6 | 17.4 | 20 |
Sweden | 38.7 | 53.0 | 53.4 | 54.2 | 54.6 | 49 |
France | Spain | Sweden | ||||
---|---|---|---|---|---|---|
mt of CO2 | % of Total | mt of CO2 | % of Total | mt of CO2 | % of Total | |
Total | 306.1 | 253.4 | 37.6 | |||
Electricity and heat production | 45.8 | 15.0% | 78.8 | 31.1% | 7.1 | 18.9% |
Other energy industries own use | 13.5 | 4.4% | 19.8 | 7.8% | 2.7 | 7.2% |
Manufacturing industries and construction | 41.1 | 13.4% | 30.2 | 11.9% | 6.5 | 17.3% |
Transport | 125.8 | 41.1% | 91.7 | 36.2% | 19.7 | 52.4% |
of which roads | 121.5 | 39.7% | 81.7 | 32.2% | 19.1 | 50.8% |
Residential | 42.9 | 14.0% | 16.8 | 6.6% | 0.2 | 0.5% |
Commercial and public services | 26.1 | 8.5% | 9.5 | 3.7% | 1.2 | 3.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piłatowska, M.; Geise, A. Impact of Clean Energy on CO2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries. Energies 2021, 14, 812. https://doi.org/10.3390/en14040812
Piłatowska M, Geise A. Impact of Clean Energy on CO2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries. Energies. 2021; 14(4):812. https://doi.org/10.3390/en14040812
Chicago/Turabian StylePiłatowska, Mariola, and Andrzej Geise. 2021. "Impact of Clean Energy on CO2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries" Energies 14, no. 4: 812. https://doi.org/10.3390/en14040812
APA StylePiłatowska, M., & Geise, A. (2021). Impact of Clean Energy on CO2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries. Energies, 14(4), 812. https://doi.org/10.3390/en14040812