A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules
Abstract
:1. Introduction
- a new system of communication in which both the digital world and the real world are connected with each other, thanks to which machines, products in different processing phases, systems and people—having an individual IP address—exchange digital information via the Internet protocol; direct communication between devices; advanced human-machine interfaces;
- intelligent sensors with built-in systems of individual identification, data processing and communication; incremental manufacturing technologies, e.g., 3-D printing—both for prototyping and for the implementation of individual orders are carried out in stages in stages, and breakthrough changes are and will be triggered by the scale of their application, synergy, integration and development dynamics;
- data processing in the cloud or fog, with response dynamics at the level of milliseconds; analytics of large data sets on all aspects of product development and production; simulation techniques for the operation of real objects in their virtual representations, based on data provided and processed in real time, allowing to test and optimize the configuration of production processes before introducing physical changes;
- a new generation of robots, characterized by active interaction with the environment and with other robots and adaptation to changing conditions and requirements; augmented reality systems, supporting the design and servicing of devices;
- cybersecurity solutions ensuring secure, reliable communication and identification as well as management access to systems and devices.
2. Materials and Methods
- Scientific papers in key scientific databases: WoS and Scopus
- Overview of public publications: reports, case studies, commercial offers, reviews, news etc. by using google.com.
- (1)
- The general framework for the implementation of Industry 4.0.
- (2)
- The basic path (way) of enterprises to Industry 4.0.
- (3)
- The schedule of activities of enterprises leading to Industry 4.0.
3. Results
3.1. Lietrature Review
3.2. Analysis of Cases of the Industry 4.0 Implementation
- a traditional production line with mass production with a diverse range of products produced by machines operated by people,
- smart lines in speed factories with production in short series (cycles) of products according to the needs of a specific customer (closer to the customer) using robots and 3D printers.
4. Discussion
- (1)
- “Smart automated plants (producers) address the need for mass products at low cost and are fully automated, digitized, and highly cost efficient. These plants produce large volumes and commodities.
- (2)
- Customer-centric plants address trend markets. These are ultra-responsive plants producing highly customized products at scale and affordable cost to address the trend towards mass personalization.
- (3)
- E-plant in a box addresses niche and remote markets. This small-scale, low-capex, mobile plant is able to produce a limited range of products at a new location and can be set up quickly to address subscale niche markets”.
- (1)
- Learning machines with a teacher—the operator of the device “prompts” the machine, controls data, participates in the decisions of machines. Traditional information and computer systems use averaged statistical data to predict when corrections should be made to system operation or corrective or preventive actions should be taken.
- (2)
- Learning machines without a teacher—algorithms of this type work on datasets without human help, and their result is a set of automatically found patterns, based on collected data that can be applied to existing faults, problems, anomalies in production. If we want machines and production cells to adapt their configuration to individual workpieces, we should be able to add or reorganize machine modules dynamically. The final result of the activities is full openness and decentralized production [9]. New production systems are based on artificial intelligence and use various technologies such as machine learning, deep learning and cognitive computing algorithms, complementary learning [7,74,75]. Moreover, no supplier is able to provide an optimal solution for all needs in learning machines. Therefore, it is absolutely necessary to create solid foundations for compatibility with existing systems and the pursuit of open technologies (cooperation with external systems).
- (1)
- Manufacturers produce mass products but with variants of products designed on the basis of their modular architecture by using flexible manufacturing systems. Flexible automation of production lines, thanks to the introduction of programmable controllers and computers for industrial devices, enabled the extension of the range of products to the family of predefined modules, with production costs comparable to mass production. By choosing a specific product configuration from the catalog of available options, the desired level of his customization is achieved, thus satisfying the needs of more customers than in the case of non-personalization of the offer [8,23,24,82,83,84].
- (2)
- Producers use additive devices (e.g., 3D printers) and a customer becomes an active participant in product design. The customer now creates his own configuration, usually with the use of specialized tools supporting design, and only after this stage the product is manufactured. The means enabling the effective implementation of this concept are reconfigurable manufacturing systems based on the assumption: “efficiency and functionality precisely adapted to the needs and their changes over time” [7,12,28,29,70,73,79,85,86,87,88,89].
- (1)
- Traditional production is a priority in relation to intelligent production,
- (2)
- Both types of production are almost equally important,
- (3)
- Intelligent production is more important and more developed than traditional production.
5. Conclusions
- -
- Leading technologies: cyber-physical systems (CPS), cloud manufacturing, IoT, etc. form the base for Industry 4.0;
- -
- this base is being overbuilt with further management systems, e.g., knowledge and human-machine relations;
- -
- the cycle of changes: machine—action—learning creates new value for the economy, which is the possibilities offered by an intelligent factory: better, faster, more comfortable, personalized products, etc.
- -
- A company’s path to Industry 4.0 is gradual, but involves two levels: strategic and operational;
- -
- enterprises in different industries choose which technology projects will be implemented first (industries where Industry 4.0 solutions are more easily implemented are considered to be clothing, footwear, automotive);
- -
- the implementation time of enterprises’ projects towards Industry 4.0 depends on the size of individual projects, their complexity and the resource capabilities of enterprises (large enterprises have more opportunities to change towards Industry 4.0).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kagermann, H.; Wahlster, W.; Helbig, J. (Eds.) Recommendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group. Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution; VDI-Nachrichten: Frankfurt, Germany, 2011. [Google Scholar]
- Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative Industry 4.0: Securing the Future of German Manufacturing Industry. Final Report of the Industry 4.0 Working Group Forschungsunion. 2013. Available online: https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf (accessed on 2 February 2020).
- Kagermann, H.; Wahlster, W.; Helbig, J. Final Report of the Industrie 4.0 Working Group; Acatech-National Academy of Science and Engineering: München, Germany, 2013; Available online: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/ (accessed on 10 January 2020).
- Kagermann, H. Change through Digitization—Value Creation in the Age of Industry 4.0. In Management of Permanent Change; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Schuh, G.; Potente, T.; Wesch-Potente, C.; Hauptvogel, A. Sustainable Increase of Overhead Productivity due to Cyber-Physical-Systems. Available online: https://www.sciencedirect.com/science/article/pii/S2212827114006453 (accessed on 10 February 2021). [CrossRef] [Green Version]
- Haller, S.; Karnouskos, S.; Schroth, C. The Internet of Things in an Enterprise Context. In Future Internet Symposium; Springer: Berlin/Heidelberg, Germany, 2008; pp. 14–28. [Google Scholar]
- Oks, S.J.; Fritzsche, A.; Möslein, K.M. An Application Map for Industrial Cyber-Physical Systems. Ind. Internet Things 2017, 62, 21–45. [Google Scholar]
- Bauernhansl, T.; Hompel, M.; Vogel-Henser, B. Industrie 4.0 in Produkten, Automatisierung und Logistik; Springer Fachmedien: Wiesbaden, Germany, 2014. [Google Scholar]
- Brettel, M.; Friedrichsen, N.; Keller, M.; Rosenberg, M. How virtualization, decentralization and networkbuilding change the manufacturing landscape. An Industry 4.0 Perspective. Periodical 2014, 8, 37. [Google Scholar]
- Vrchota, J.; Volek, T.; Novotná, M. Factors Introducing Industry 4.0 to SMES. Soc. Sci. 2019, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Moeuf, A.; Lamouri, S.; Pellerin, R.; Tamayo-Giraldo, S.; Tobon-Valencia, E.; Eburdy, R. Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. Int. J. Prod. Res. 2020, 58, 1384–1400. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H. Research Letters: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Schmidt, R.; Möhring, M.; Härting, R.-C.; Reichstein, C.; Neumaier, P.; Jozinović, P. Industry 4.0—Potentials for Creating Smart Products: Empirical Research Results. Int. Conf. Bus. Inf. Syst. 2015, 208, 16–27. [Google Scholar]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards Future Industrial Opportunities and Challenges. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar]
- Santos, K.; Loures, E.; Piechnicki, F.; Canciglieri, O. Opportunities Assessment of Product Development Process in Industry 4.0. Procedia Manuf. 2017, 11, 1358–1365. [Google Scholar] [CrossRef]
- Berger, R. Industry 4.0—The New Industrial Revolution—How Europe will Succeed; Roland Berger Strategy Consultants: Munich, Germany, 2014. [Google Scholar]
- Młody, M. Personalizacja produktów a Przemysł 4.0—ocena słuszności implementacji nowoczesnych technologii w przemyśle produkcyjnym z perspektywy konsumentów. Ekonomika i Organizacja Przedsiębiorstw 2018, 62–72. Available online: https://www.researchgate.net/publication/328912550 (accessed on 31 January 2019).
- Deloitte-Industry 4.0. The Industry 4.0 Paradox. Overcoming Disconnects on the Path to Digital Transformation, Deloitte Insights, 2018 Deloitte Development LLC. Available online: https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/energy-resources/deloitte-cn-er-industry-4.0-paradox-overcoming-disconnects-en-full-report-190225.pdf (accessed on 9 September 2020).
- PwC-Global Industry 4.0 Survey. What We Mean by Industry 4.0/Survey Key Findings/Blueprint for Digital Success, PwC 2016. Available online: https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf (accessed on 20 August 2020).
- Hu, S.J. Evolving paradigms of manufacturing: From mass production to mass customization and personalization. Procedia CIRP 2013, 7, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. From mass customization to mass personalization: A strategic transformation. Int. J. Flex. Manuf. Syst. 2007, 19, 533–547. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.S.; Yang, J.H.; Wang, K.S. Industry 4.0: A way from mass customization to mass personalization production. Adv. Manuf. 2017, 5, 311–320. [Google Scholar] [CrossRef]
- Saniuk, S.; Grabowska, S.; Gajdzik, B. Personalization of Products in the Industry 4.0 Concept and Its Impact on Achieving a Higher Level of Sustainable Consumption. Energies 2020, 13, 5895. [Google Scholar] [CrossRef]
- Fogliattoa, F.S.; da Silveirab, G.J.C.; Borensteinc, D. The mass customization decade: An updated review of the literature. Int. J. Prod. Econ. 2012, 138, 14–25. [Google Scholar] [CrossRef]
- Grabowska, S. Business model metallurgical company built on the competitive advantage. METAL 2016. In Proceedings of the 25th International Conference on Metallurgy and Materials, Brno, Czech Republic, 25–27 May 2016; pp. 1800–1807. [Google Scholar]
- Hermann, M.; Pentek, T. Design Principles for Industrie 4.0 Scenarios: A Literature Review; Working Paper, No. 01; Technische Universität Fakultät Maschinenbau: Dortmund, Germany, 2015. [Google Scholar]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences, Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- Schwab, K. The Fourth Industrial Revolution. World Economic Forum. Deloitte. 2016. Available online: https://scholar.google.com.hk/scholar?hl=zh-TW&as_sdt=0%2C5&q=Schwab%2C+K.+The+Fourth+Industrial+Revolution.+World+Economic+Forum.+Deloitte+2016.&btnG= (accessed on 10 February 2021).
- Holtgrewe, U. New technologies: The future and the present of work in information and communication technology. New Technol. Work Employ. 2014, 29, 9–24. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia Cirp 2016, 40, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Saniuk, S.; Saniuk, A.; Cagáňová, D. Cyber Industry Networks as an environment of the Industry 4.0 implementation. Wirel. Netw. 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saniuk, S.; Saniuk, A. Challenges of industry 4.0 for production enterprises functioning within Cyber Industry Networks. Manag. Syst. Prod. Eng. 2018, 4, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, A. On the way towards Industry 4.0: Solutions from the top cluster it’s OWL—Intelligent Technical Systems East Westphalia-Lippe | [Auf dem weg zu industrie 4.0: Lösungen aus dem spitzencluster it’s OWL—intelligente technische systeme ostwestfalenLippe]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb 2015, 110, 8. [Google Scholar]
- Norton, M.J. Introductory Concepts in Information Science. 2001. Available online: https://books.google.com.hk/books?hl=zh-TW&lr=&id=6NVN6UdRbtwC&oi=fnd&pg=PA1&dq=Norton,+M.J.+Introductory+Concepts+in+Information+Science%3B+Asist+Members+NY+USA,2001.&ots=QttGXfevHp&sig=cfMNmpZi11WgbS52oLb8VNKptsw&redir_esc=y#v=onepage&q&f=false (accessed on 10 February 2021).
- Polanco, X. Infométrie et ingénierie de la connaissance. In Les Sciences de L’information Bibliométrie Scientométrie Infométrie; Noyer, J.M., Ed.; Presses Universitaires de Rennes: Rennes, Germany, 1995. [Google Scholar]
- Gajdzik, B.; Grabowska, S.; Saniuk, S.; Wieczorek, T. Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0. Energies 2020, 13, 4254. [Google Scholar] [CrossRef]
- Ageyeva, T.; Horváth, S.; Kovács, J.G. In-Mold Sensors for Injection Molding: On the Way to Industry 4.0. Sensors 2019, 19, 3551. [Google Scholar] [CrossRef] [Green Version]
- Kireyeva, A.A.; Mussabalina, D.S.; Tolysbaev, B.S. Assessment and Identification of the Possibility for Creating It Clusters in Kazakhstan Regions. Ekonomika Regiona 2018, 14, 463–473. [Google Scholar] [CrossRef]
- Kireeva, A.A.; Tsoi, A.A. Mechanisms for Forming IT-clusters as “Growth Poles” in Regions of Kazakhstan on the way to industry 4.0. Econ. Soc. Chang. Facts Trends Forecast 2018, 11, 212–224. [Google Scholar] [CrossRef]
- Sony, M.; Naik, S. Critical factors for the successful implementation of Industry 4.0: A review and future research direction. Prod. Plan. Control 2020, 31, 799–815. [Google Scholar] [CrossRef]
- Börner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Ann. Rev. Inf. Sci. Technol. 2005, 37, 179–255. [Google Scholar] [CrossRef]
- Chandra, Y. Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis. PLoS ONE 2018, 13, e0190228. [Google Scholar] [CrossRef] [PubMed]
- Osińska, V. Wizualizacja paradygmatów badawczych. Zagadnienia Naukoznawstwa 2012, 48, 205–220. [Google Scholar]
- McKinsey- Industry 4.0: How to Navigate Digitization of the Manufacturing Sector, Report, McKinsey Company. 2015. Available online: https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Operations/Our%20Insights/Industry%2040%20How%20to%20navigate%20digitization%20of%20the%20manufacturing%20sector/Industry-40-How-to-navigate-digitization-of-the-manufacturing-sector.pdf (accessed on 10 June 2020).
- Piątek, Z. Industry 4.0 w Praktyce—Wizyta w Fabryce Referencyjnej. Portal: Industry 4.0. Available online: http://przemysl-40.pl/index.php/2017/07/14/industry-4-0-w-praktyce-wizyta-w-fabryce-referencyjnej-firmy-bosch/ (accessed on 17 July 2017).
- Henkel, R. Adidas Speedfactory: Fully Automated Shoe Production. INNOVATION I 05/13/2016. Available online: https://www.ispo.com/en/trends/id_77829550/adidas-speedfactory-fully-automated-shoe-production.html (accessed on 10 September 2019).
- PB-Czwarta Rewolucja Przemysłowa z Udziałem KGHM, Information from KGHM. Puls Biznesu. Available online: https://www.pb.pl/czwarta-rewolucja-przemyslowa-z-udzialem-kghm-934221 (accessed on 7 June 2018).
- Schumacher, A.; Nemeth, T.; Sihn, W. Roadmapping towards industrial digitalization based on an Industry 4.0 maturity model for manufacturing enterprises. Procedia CIRP 2019, 79, 409–414. [Google Scholar] [CrossRef]
- Schumacher, A.; Schumacher, C.; Sihn, W. Industry 4.0 Operationalization Based on an Integrated Framework of Industrial Digitalization and Automation. In Proceedings of the International Symposium for Production Research 2019, ISPR 2019; Lecture Notes in Mechanical Engineering; Durakbasa, N., Gençyılmaz, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Di Nardo, M. Developing a Conceptual Framework Model of Industry 4.0 for Industrial Management. Ind. Eng. Manag. Syst. 2020, 19, 551–560. [Google Scholar] [CrossRef]
- Rodak, A.; Gracel, J. Jak Zbudować Mapę do Przemysłu 4.0 (In Polish). Speccial Issue: IT Technology. Available online: https://www.ican.pl/b/jak-zbudowac-mape-drogowa-do-przemyslu-40/P1HCZ5gjvv (accessed on 30 June 2020).
- Nimsai, S.; Siriyod, T. Risk modeling of the supply chain for Thai cassava chip exports to China. Int. J. Supply Chain Manag. 2019, 8, 23–31. [Google Scholar]
- Kolberg, D.; Zühkle, D. Lean Automation enabled by Industry 4.0 Technlogies. IFAC Papers OnLine 2015, 48, 1870–1875. [Google Scholar] [CrossRef]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries April 09, 2015, Overview. Available online: https://www.inovasyon.gen.tr/images/Haberler/bcgperspectives_Industry40_2015.pdf (accessed on 10 June 2020).
- Baccarini, D. The concept of project complexity a review. Int. J. Proj. Manag. 1996, 14, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Andersen, E.S.; Jessen, S.A. Project maturity in organisations. Int. J. Proj. Manag. 2003, 21, 457–461. [Google Scholar] [CrossRef]
- Borowska, K. Zastosowanie metody Project Cycle Management w zarządzaniu projektami współfinansowanymi ze środków unijnych. In Heraditas Mercaturae. Księga Pamiątkowa Dedykowana śWiętej Pamięci Profesorowi S. Miklaszewskiemu; Czubik, P., Mach, Z., Eds.; Instytut Multimedialny: Kraków, Poland, 2012; p. 146. (In Polish) [Google Scholar]
- Manocha, T.; Sahni, M.; Satija, V.D. Adoption and awareness of industry 4.0 in logistics industry. Int. J. Adv. Sci. Technol. 2020, 29, 6334–6347. [Google Scholar]
- Industry 4.0—Are you Ready for the 4.0 Industrial Revolution? (in Polish: Przemysł 4.0—Czy Jesteś Gotowy na Czwartą Rewolucję Przemysłową?). Available online: Oselectronic.com/articles/sos-supplier-of-solution/industry-4-0-part-2-are-you-ready-for-the-4-industrial-revolution-2062 (accessed on 18 October 2018).
- Kale, V. Guide to Cloud Computing for Business and Technology Managers: From Distributed Computing to Cloudware Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Jones, S.; Ross, S.; Ruusalepp, R. Data Audit Framework Methodology, Version 1.8; HATII: Glasgow, UK, May 2009; Available online: https://www.data-audit.eu/DAF_Methodology.pdf (accessed on 12 December 2020).
- Gracel, J.; Łebkowski, P. Concept of Industry 4.0-Related Manufacturing Technology Maturity Model (ManuTech Maturity Model—MTMM). Decis. Mak. Manuf. Serv. 2018, 12, 17–31. Available online: https://journals.agh.edu.pl/dmms/article/view/2779/2193 (accessed on 12 December 2020). [CrossRef]
- Gilchrist, A. Industry 4.0.; Apress: New York, NY, USA, 2014. [Google Scholar]
- Goti-Elordi, A.; de-la-Calle-Vicente, A.; Oyarbide-Zubillaga, A.; Alberdi-Celaya, E.; Torres-Fuentes, B.; Unanue-Telleria, I.; García-Bringas, P.; Bacigalupe-Gutiérrez, A. Implementation of a Business Intelligence Tool for the Dyna Journal. DYNA 2020, 95, 482–486. [Google Scholar] [CrossRef]
- Goti-Elordi, A.; De La Calle-Vicente, A.; Gil-Larrea, M.; Errasti, A.; Uradnicek, J. Application of a Business Intelligence tool within the context of Big Data in a food industry company. DYNA 2017, 92, 347–353. [Google Scholar] [CrossRef]
- John, L.; Cameron, I.; Hassall, M. Improving process safety: What roles for Digitalization and Industry 4.0? Process Saf. Environ. Prot. 2019, 132, 325–339. [Google Scholar]
- Kagermann, H. Securing the Future of German Manufacturing Industry. Recommendations for implementing the strategic Initiative Industrie 4.0. In Acatech, Final Report of the Industrie 4.0; Acatech: Frankfurt, Germany, 2013; pp. 4–7. [Google Scholar]
- Od Industry 4.0 do Smart Factory. Available online: https://publikacje.siemens-info.com/pdf/76/Od%20Industry%204.0%20do%20Smart%20Factory.pdf (accessed on 12 December 2020).
- Botthof, A.; Hartmann, E.A. Zukunft der Arbeit in Industrie 4.0—Neue Perspektiven und offene Fragen. In Zukunft der Arbeit in Industrie 4.0; Botthof, A., Hartmann, E.A., Eds.; Springer Vieweg: Berlin/Heidelberg, Germany, 2015; p. 162. [Google Scholar]
- Becker, K.D. Arbeit in der Industrie 4.0—Erwartungen des Instituts für angewandte Arbeitswissenschaft e.V. In Zukunft der Arbeit in Industrie 4.0; Botthof, A., Hartmann, E.A., Eds.; Springer Vieweg: Berlin/Heidelberg, Germany, 2015; p. 25. [Google Scholar]
- Malanowski, N.; Brandt, J.C. Innovations- und Effizienzsprünge in der Chemischen Industrie? Wirkungen und Herausforderungen von Industrie 4.0 und Co., VDI Technologiezentrum GmbH: Düsseldorf, Geermany, 2014; p. 39. Available online: https://www.boeckler.de/pdf/p_fofoe_innovations_und_effizienzspruenge_chem_indust.pdf (accessed on 10 February 2021).
- Böhle, F. Digitalisierung Braucht Erfahrungswissen. Available online: http://denk-doch-mal.de/wp/fritz-boehle-digitalisierungerfordert-erfahrungswissen (accessed on 25 May 2017).
- Windelband, L. Zukunft der Facharbeit im Zeitalter “Industrie 4.0”. J. Tech. Educ. 2014, 2, 155–157. [Google Scholar]
- Gajdzik, B.; Sroka, W. Analytic study of the capital restructuring processes in metallurgical enterprises around the world and in Poland. Metalurgija 2012, 51, 265–268. [Google Scholar]
- Cygler, J.; Gajdzik, B.; Sroka, W. Coopetition as a development stimulator of enterprises in the networked steel sector. Metalurgija 2014, 53, 383–386. [Google Scholar]
- Ślusarczyk, B.; Tvaronavičienė, M.; Haque, A.U.; Oláh, J. Predictors of Industry 4.0 technologies affecting logistic enterprises’ performance: International perspective from economic lens. Technol. Econ. Dev. Econ. 2020, 26, 1263–1283. [Google Scholar] [CrossRef]
- Geissbauer, R.; Vedso, J.; Schrauf, S. Industry 4.0: Building the Digital Enterprise. 2016. Available online: https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf (accessed on 10 February 2021).
- Afonasova, M.A.; Panfilova, E.E.; Galichkina, M.A.; Ślusarczyk, B. Digitalization in economy and innovation: The effect on social and economic processes. Pol. J. Manag. Stud. 2019, 19, 22–32. [Google Scholar]
- Zhang, Z. Environmental Data Analysis Methods and Applications; De Gruyter: Berlin, Germany, 2016. [Google Scholar]
- Chui, M.; Löffler, M.; Roberts, R. The Internet of Things. McKinsey Q. 2016, 2, 1–9. [Google Scholar]
- Lorenz, M.; Rüfimann, M.; Strack, R.; Luetk, K.L. Bolle Man and Machine in Industry 4.0. How Will Technology Transform the Industrial Workforce Through 2025? BCG Perspectives 2015. Available online: https://www.voced.edu.au/content/ngv:73341 (accessed on 2 December 2020).
- Grzybowska, K.; Gajdzik, B. Optimisation of equipment setup process in enterprises. Metalurgija 2012, 4, 555–558. [Google Scholar]
- Lasi, H.; Fettke, P.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Wang, L.; Törngren, M.; Onori, M. Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 2015, 37, 517–527. [Google Scholar] [CrossRef]
- Gajdzik, B. Chapter 3—Development of business models and their key components in the context of cyber-physical production systems in Industry 4.0. In Scalability and Sustainability of Business Models in Circular, Sharing and Networked Economies; Jabłoński, A., Jabłoński, M., Eds.; Cambridge Scholars Publishing: Newcastle, UK, 2020; pp. 73–94. ISBN1 (10): 1-5275-4609-8. ISBN2 (13): 978-1-5275-4609-7. [Google Scholar]
- Piller, F.T.; Tseng, M.M. (Eds.) Handbook of Research in Mass Customization and Personalization; World Scientific: Singapore, 2010. [Google Scholar]
- Piller, F.T.; Walcher, D. Leading Mass Customization & Personalization; Germany 2018. Available online: https://www.amazon.com/Leading-Customization-Personalization-Frank-Piller/dp/1387558846 (accessed on 10 February 2021).
- Korena, Y.; Shpitalnib, M.; Guc, P.; Hu, S.J. Product Design for Mass-Individualization. Procedia CIRP 2015, 36, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.P.; Kasanoff, D.B. Making It Personal: How to Profit from Personalization without Invading; Perseus Publishing: New York, NY, USA, 2002. [Google Scholar]
- Turber, S.; Smiela, C. A Business Model Type for the Internet of Things. Available online: https://cocoa.ethz.ch/downloads/2014/08/1725_Turber%20Smiela-2014%20ECIS-A%20BM%20Type%20for%20the%20IoT_published.pdf (accessed on 2 December 2020).
- Weber, R.H.; Weber, R. Internet of Things; Legal Perspectives; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kaliczyńska, M.; Dąbek, P. Value of the Internet of Things for the Industry—An Overview. Mechatron. Ideas Ind. Appl. 2015, 317, 51–63. [Google Scholar]
- Fatorachian, H.; Kazemi, H. A criticalinvestigation of Industry 4.0 in manufacturing: Theoretical operationalisation framework. J. Prod. Plan. Control Manag. Oper. 2018, 29, 633–644. [Google Scholar] [CrossRef]
- Grabowska, S. Smart Factories in the age of Industry 4.0. Manag. Syst. Prod. Eng. 2020, 28, 2. [Google Scholar] [CrossRef]
Keywords/Number of Publications | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | 112 | 177 |
“application of Industry 4.0” | 29 | 68 |
“framework for Industry 4.0” | 24 | 28 |
“way to Industry 4.0” | 8 | 13 |
“roadmap for Industry 4.0” | 1 | 1 |
Keywords/Access Type | WoS | Scopus | ||
---|---|---|---|---|
Open Access | Other | Open Access | Other | |
“implementation of Industry 4.0” | 50 | 62 | 57 | 120 |
“application of Industry 4.0” | 9 | 20 | 16 | 52 |
“framework for Industry 4.0” | 15 | 9 | 10 | 18 |
„way to Industry 4.0” | 3 | 5 | 3 | 10 |
“roadmap for Industry 4.0” | 0 | 1 | 0 | 1 |
Keywords/Year | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | 2016 (8); 2017 (14); 2018 (17); 2019 (38); 2020 (31) | 2014 (2); 2015 (4); 2016 (9); 2017 (18); 2018 (25); 2019 (61); 2020 (53); 2021 (5) |
“application of Industry 4.0” | 2016 (3); 2017 (8); 2018 (3); 2019 (8); 2020 (7) | 2016 (2); 2017 (15); 2018 (5); 2019 (25); 2020 (21) |
“framework for Industry 4.0” | 2016 (2); 2017 (2); 2018 (6); 2019 (9); 2020 (5) | 2016 (1); 2017 (4); 2018 (6); 2019 (11); 2020 (6) |
“way to Industry 4.0” | 2016 (1); 2017 (1); 2018 (3); 2019 (3) | 2014 (1); 2015 (2); 2016 (4); 2017 (1); 2018 (3); 2019 (2) |
“roadmap for Industry 4.0” | 2020 (1) | 2018 (1) |
Keywords/Author | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” * | Sony, M. (4); Wan, J.F. (4); Li, D. (3); Tang, S. L. (3); Chromjakova F. (3) | Sony, M.(5); Lanza, G. (4); Karabegović, I.(3); Liebrecht, C.(3); Majstorovic, V.(3); Telukdarie, A.(3); Chromjakova, F.(2); Constantinescu, C.L.(2); Contreras, J.D.(2); Delsing, J(2) |
“application of Industry 4.0” * | Basl, J. (2); Munsamy, M. (2); Telukdarie, A. (2); Aguayo-Gonzalez, F. (1); Alexandre, B. (1) | Basl, J. (2), Dallasega, P. (2), Lanza, G. (2), Liebrecht, C. (2); Munsamy, M. (2); Telukdarie, A. (2); Vidanagamachchi, K. (2); Adsbøll Wickstrøm, K. (1); Aguayo-Gonzalez, F. (1); Aguayo-Gonzalez, F. (1) |
“framework for Industry 4.0” * | Bratan, S. (1); Chova L.G. (1); Gorbatyuk S. (1), Leonov S. (1), Martinez A.L. (1) | Agrawal, R. (1); Antony, J. (1), Ariansyah, D. (1), Azimov, P (1), Babkin, A. (1) (Additional information: the list was prepared alphabetically in the databases, each author had only one documents, so there was not the Top 5 list) |
“way to Industry 4.0” ** | Ageyeva, T. (1); Dold, L. (1), Gepp, M. (1); Horvath, S (1); Kireeva, A.A. (1); Kovacs, J.G. (1); Maier, R. (1); Mussabalina D.S. (1); Tarassov V.B. (1); Tauchnitz T. (1); Tolysbaev, B.S. (1); Tsoi A.A. (1); Unverdorben, S. (1), Urbas, L. (1) | Schulz, J. (2); Brozzi, R. (1); Dumitrescu, R. (1); D’Amico, R.D. (1); Gausemeier, J. (1); Isenberg, F. (1); Jasperneite, J. (1); Jurke, B.(1); Kletti, J.(1); Kühn, A.(1); Lantzke, K.(1); Marcher, C.(1); Matt, D.(1); Pasetti Monizza, G.(1); Pruschek, P.(1); Ratzek, U.(1); Rehage, G.(1); Reisch, R.(1); Riedl, M.(1); Schoppe, D.(1); Sheremetov, L.(1); Smirnov, A.(1); Strassmann, B.(1); Tarassov, V.B.(1); Teslya, N.(1); Trsek, H. (1); Weber, J. (1) |
“roadmap for Industry 4.0” ** | Jain, R. (1); Rathore A.P.S. (1); Wagire A. A. (1) | Ghobakhloo, M. (1) |
Keywords/Subject Area | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | Engineering Industrial (31); Engineering Manufacturing (27); Operations Research Management Science (19); Management (15); Engineering Electrical Electronics (12) | Engineering (111); Computer Science (71); Business, Management and Accounting (51); Decision Sciences (37); Social Science (19) |
“application of Industry 4.0” | Engineering Industrial (7); Engineering Manufacturing (7); Operations Research Management Science (5); Environmental Sciences (4); Automation Control Sciences (4) | Engineering (39); Business, Management and Accounting (24); Computer Science (24); Decision Sciences (16); Environmental Sciences (8) |
“framework for Industry 4.0” | Computer Science Information Systems (4); Engineering Manufacturing (4); Engineering Industrial (3); Computer Science Artificial Intelligence (3); Operations Research Management Science (3) | Engineering (13); Computer Science (10); Business, Management and Accounting (6); Materials Science (6); Decision Sciences (5) |
“way to Industry 4.0” | Automation Control Systems (4); Engineering (2); Area Studies (1); Business Economics (1), Chemistry (1) | Engineering (10); Decision Sciences (5); Business, Management and Accounting (4); Computer Science (3); Materials Science (3): Chemical Engineering (2) |
“roadmap for Industry 4.0” | Engineering Industrial (1); Engineering Manufacturing (1), Management (1) | Business, management and accounting (1), Computer Science (1); Engineering (1) |
Keywords/Document Type (Top 5) | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | Article (54); Proceedings papers (47); Early Access (12), Review (11); Book Chapter (1) | Article (82); Conference Paper (76); Review (8); Book Chapter (4), Conference Review (3) |
“application of Industry 4.0” | Article (15); Proceedings papers (14); Early Access (2), Book Chapter (1) | Article (34); Conference Paper (30); Book Chapter (3), Book (1) |
“framework for Industry 4.0” | Article (14); Proceedings papers (9); Early Access (1), Review (1) | Article (17); Conference papers (6); Book Chapter (2); Review (2), Conference Review (1) |
“way to Industry 4.0” | Editorial Material (3); Article (2); Proceedings Paper (2); Review (1) | Article (10); Conference Paper (3) |
“roadmap for Industry 4.0” | Article (1) | Article (1) |
Keywords/Source Title | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | Procedia CIRP (8); Production Planning Control (5); Sustainability (5), International Conference of Industrial Engineering and Engineering Management IEEM (3), International Journal of Production Research (3) | Advances In Intelligent Systems And Computing (8); Procedia CIRP (8); ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb (7); IFIP Advances In Information And Communication Technology (6); Procedia Manufacturing (6); Production Planning And Control (5); Science And Engineering (4); Sustainability Switzerland (4); IEEE International Conference On Industrial Engineering And Engineering Management (3); IEEE International Conference On Industrial Engineering And Engineering Management (3); International Journal Of Production Research (3) |
“application of Industry 4.0” | 27th International Conference on Flexible Automation and Intelligent Manufacturing Faim2017 (2); International Conference of Industrial Engineering and Engineering Management IEEM (2); Production Planning Control (2); Procedia Manufacturing (2); International Journal of Environmental Research and Public Health (2) | ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb (3); Advances In Intelligent Systems And Computing (2); IEEE Engineering Management Review (2); IEEE International Conference On Industrial Engineering And Engineering Management (2); International Journal Of Environmental Research And Public Health (2); Lecture Notes In Mechanical Engineering (2); Procedia Manufacturing (2); Proceedings Of The International Conference On Industrial Engineering And Operations Management (2); Proceedings Of The Summer School Francesco Turco (2) |
“framework for Industry 4.0” | IFAC Papersonline (3), 13th International Symposium in Management (1), 2017 IEEE International Conference on Systems Man and Cybernetics SMC (1); 51 st CIRP Conference on Manufacturing Systems (1), Cluster Computing The Journal of Networks Software Tools and Applications (1) | Chernye Metally (4); IFAC Papersonline (2); Idimt 2019 Innovation And Transformation In A Digital World 27th Interdisciplinary Information Management Talks (2); Academy Of Strategic Management Journal (2); 2017 IEEE International Conference On Systems Man And Cybernetics Smc 2017 (1) |
“way to Industry 4.0” | ATP Edition (3); 2018 IEEE 14th International Conference On Automation Science And Engineering Case (1); Advances In Intelligent Systems And Computing (1); Economic And Social Changes Facts Trends Forecast (1); Ekonomika Regiona Economy Of Region (1); IEEE InternationaL Conference On Automation Science And Engineering (1); Proceedings Of The Third International Scientific Conference Inlligent Information Technologies For Industry IITI 18 Vol 1 (1); Sensors (1) | ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb (3); IFIP Advances In Information And Communication Technology (2); Advances In Intelligent Systems And Computing (1); Chernye Metally (1), Mechatronik (1); Productivity Management (1); Professional Papermaking(1); Thyssenkrupp Techforum (1); Wochenblatt Fuer Papierfabrikation (1); Wt Werkstattstechnik (1) |
“roadmap for Industry 4.0” | Journal Of Manufacturing Technology Management (1) | Journal Of Manufacturing Technology Management (1) |
Keywords/Country | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | India (12); Czech Republic (11), Poland (9); Italy (8) | Germany (26), Italy (14), India (11), Unit. States (10, Czech Republic (9), Poland (9), Russia (9), UK (9), Brazil (7); Austria (7) |
“application of Industry 4.0” | Germany (5); Italy (4), Czech Republic (3), Indonesia (92), China (2) | Italy (12), Germany (10); UK (6); India (4), Poland (4), Spain (4), China (3), Czech Republic (3), Indonesia (3); Brazil (2) |
“framework for Industry 4.0” | Russia (6); Germany (4), Italy (4), China (3), Spain (3) | Germany (9); Russian (6), China (3), Italy (3), France (2) |
“way to Industry 4.0” | Germany (3); Kazakhstan (2); Hungary (1); The Netherlands (1); Russia (1) | Germany (8); Russian Federation (2), Italy (1); Mexico (1); Switzerland (1) |
“roadmap for Industry 4.0” | India (1) | Iran (1) |
Keywords/Country | WoS | Scopus |
---|---|---|
“implementation of Industry 4.0” | English (109), German (1), Slovak (1), Spanish (1) | English (167), German (1) |
“application of Industry 4.0” | English (27), German (1), Spanish (1) | English (64), German (3), Spanish (1) |
“framework for Industry 4.0” | English (22), Russian (1), Spanish (1) | English (21), Russian (5), German (1) |
“way to Industry 4.0” | English (5), German (3) | German (7); English (6), Russian (1) |
“roadmap for Industry 4.0” | English (1) | English (1) |
No. Case Study | Area/Goal of Change | Industry 4.0 Technologies Used |
---|---|---|
Case study 1 | Increase productivity, flexibility and efficiency of processes, increase product quality, improve cooperation with customers | process digitalization, Big Data, sensors, autonomous production line, virtual data processing platform, product visualization, IoT, Cloud Computing, continuous monitoring of productivity indicators, RFID gates, warehouse automation and robotization, additive manufacturing. |
Case study 2 | personalization of production, improvement of cooperation and contacts with the customer | Fully automated factory, 3D printing, |
Case study 3 | increasing work safety during raw material extraction, improving the flow of information within the company | Knowledge centralization, Cloud Computing, data analytics, IoT, robots at resource extraction sites, autonomous transport. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Grabowska, S.; Saniuk, S. A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules. Energies 2021, 14, 940. https://doi.org/10.3390/en14040940
Gajdzik B, Grabowska S, Saniuk S. A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules. Energies. 2021; 14(4):940. https://doi.org/10.3390/en14040940
Chicago/Turabian StyleGajdzik, Bożena, Sandra Grabowska, and Sebastian Saniuk. 2021. "A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules" Energies 14, no. 4: 940. https://doi.org/10.3390/en14040940
APA StyleGajdzik, B., Grabowska, S., & Saniuk, S. (2021). A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules. Energies, 14(4), 940. https://doi.org/10.3390/en14040940