Fabrication and Characterization of Environmentally Friendly Biochar Anode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Activated Biochar Anodes
2.1.1. Production of Activated Biochar
2.1.2. Mucilage as a Binding Agent Extraction and Preparation
2.1.3. Formation of Anodes
2.2. Properties Determination of Produced Anodes
2.2.1. Thermal Characterization—Thermogravimetric Analysis (TGA)
2.2.2. Analysis of Mechanical Resistance
2.2.3. Brunauer-Emmett-Teller (BET) Surface Area Analysis
2.2.4. Electrical Conductivity Estimation
3. Results
3.1. Thermogravimetric Analysis (TGA)
3.2. Mechanical Resistance
3.3. BET Surface Area Analysis
3.4. Electrical Conductivity Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Dong, Y.; Li, J.; Fu, Q.; Zhang, L. Templating synthesis of hierarchically meso/macroporous N-doped microalgae derived biocarbon as oxygen reduction reaction catalyst for microbial fuel cells. Int. J. Hydrogen Energy 2021, 46, 2530–2542. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rodríguez-Couto, S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 164, 107779. [Google Scholar] [CrossRef]
- Choudhury, P.; Uday, U.S.P.; Bandyopadhyay, T.K.; Ray, R.N.; Bhunia, B. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered 2017, 8, 471–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonawane, J.; Yadav, A.; Ghosh, P.C.; Adeloju, S.B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576. [Google Scholar] [CrossRef] [PubMed]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.; Banks, C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Singh, S.; Songera, D.S. A Review on Microbial Fuel Cell Using Organic Waste as Feed. CIBTech J. Biotechnol. 2012, 2, 17–27. [Google Scholar]
- Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef]
- Devi, N.S.; Hariram, M.; Vivekanandhan, S. Modification techniques to improve the capacitive performance of biocarbon materials. J. Energy Storage 2020, 33, 101870. [Google Scholar] [CrossRef]
- Escobar, B.; Martínez-Casillas, D.; Pérez-Salcedo, K.; Rosas, D.; Morales, L.; Liao, S.; Huang, L.; Shi, X. Research progress on biomass-derived carbon electrode materials for electrochemical energy storage and conversion technologies. Int. J. Hydrogen Energy 2021, 46, 26053–26073. [Google Scholar] [CrossRef]
- Zha, Z.; Zhang, Z.; Xiang, P.; Zhu, H.; Zhou, B.; Sun, Z.; Zhou, S. One-step preparation of eggplant-derived hierarchical porous graphitic biochar as efficient oxygen reduction catalyst in microbial fuel cells. RSC Adv. 2021, 11, 1077–1085. [Google Scholar] [CrossRef]
- Tang, J.; Wang, Y.; Zhao, W.; Ye, W.; Zhou, S. Porous hollow carbon tube derived from kapok fibres as efficient metal-free oxygen reduction catalysts. Sci. China Technol. Sci. 2019, 62, 1710–1718. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Li, D.-B.; Zhang, F.; Tong, Z.-H.; Yu, H.-Q. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1. Front. Environ. Sci. Eng. 2018, 12, 11. [Google Scholar] [CrossRef]
- Glibert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, S.; Hariram, M.; Vivekanandhan, S.; Navia, R. Sustainable biocarbon materials derived from Lessonia Trabeculata macroalgae biomass residue for supercapacitor applications. Energy Storage 2021, 3, e222. [Google Scholar] [CrossRef]
- Salimi, P.; Norouzi, O.; Pourhoseini, S.; Bartocci, P.; Tavasoli, A.; Di Maria, F.; Pirbazari, S.; Bidini, G.; Fantozzi, F. Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries. Renew. Energy 2019, 140, 704–714. [Google Scholar] [CrossRef]
- Su, H.; Fu, C.; Zhao, Y.; Long, D.; Ling, L.; Wong, B.M.; Lu, J.; Guo, J. Polycation Binders: An Effective Approach toward Lithium Polysulfide Sequestration in Li–S Batteries. ACS Energy Lett. 2017, 2, 2591–2597. [Google Scholar] [CrossRef]
- Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage—The transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018, 11, 3096–3127. [Google Scholar] [CrossRef] [Green Version]
- Ya, K.Z.; Kumazawa, K.; Kawamura, G.; Muto, H.; Matsuda, A. Cell performance enhancement with titania-doped polybenzimidazole based composite membrane in intermediate temperature fuel cell under anhydrous condition. J. Ceram. Soc. Jpn. 2018, 126, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, L.; An, L. Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes. Renew. Energy 2020, 162, 2220–2226. [Google Scholar] [CrossRef]
- Orlova, T.S.; Shpeizman, V.V.; Glebova, N.V.; Nechitailov, A.; Spitsyn, A.A.; Ponomarev, D.A.; Gutierrez-Pardo, A.; Ramirez-Rico, J. Environmentally Friendly Monolithic Highly-Porous Biocarbons as Binder-Free Supercapacitor Electrodes. Rev. Adv. Mater. Sci. 2018, 55, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Jia, Y.; Shen, D.; Zhou, Y.; Chen, T.; Chen, W.; Ge, Z.; Zheng, S.; Wang, M. The effect of chemical vapor deposition temperature on the performance of binder-free sewage sludge-derived anodes in microbial fuel cells. Sci. Total Environ. 2018, 635, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, M.; Li, K.; Xia, M.; Chen, Z.; Xiao, H.; Fang, Y.; Chen, Y.; Yang, H.; Chen, H. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl. Energy 2020, 278, 115730. [Google Scholar] [CrossRef]
- Ziolkovska, A. Laws of flaxseed mucilage extraction. Food Hydrocoll. 2012, 26, 197–204. [Google Scholar] [CrossRef]
- Zafeiropoulos, N.E. Interface Engineering of Natural Fibre Composites for Maximum Performance; Woodhead Publishing: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Ren, H.; Jiang, C.; Chae, J. Effect of temperature on a miniaturized microbial fuel cell (MFC). Micro Nano Syst. Lett. 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Yousef, S.; Kalpokaitė-Dičkuvienė, R.; Baltušnikas, A.; Pitak, I.; Lukošiūtė, S.-I. A new strategy for functionalization of char derived from pyrolysis of textile waste and its application as hybrid fillers (CNTs/char and graphene/char) in cement industry. J. Clean. Prod. 2021, 314, 128058. [Google Scholar] [CrossRef]
- Espinola, A.; Miguel, P.M.; Salles, M.R.; Pinto, A.R. Electrical properties of carbons—resistance of powder materials. Carbon 1986, 24, 337–341. [Google Scholar] [CrossRef]
- Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Electrical conductivity of conductive carbon blacks: Influence of surface chemistry and topology. Appl. Surf. Sci. 2003, 217, 181–193. [Google Scholar] [CrossRef]
- Bensharada, M.; Telford, R.; Stern, B.; Gaffney, V. Loss on ignition vs. thermogravimetric analysis: A comparative study to determine organic matter and carbonate content in sediments. J. Paleolimnol. 2021, 66, 279–296. [Google Scholar] [CrossRef]
- Rabemanolontsoa, H.; Saka, S. Comparative study on chemical composition of various biomass species. RSC Adv. 2013, 3, 3946–3956. [Google Scholar] [CrossRef] [Green Version]
- Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 2017, 126, 380–389. [Google Scholar] [CrossRef]
- Michalak, I.; Baśladyńska, S.; Mokrzycki, J.; Rutkowski, P. Biochar from A Freshwater Macroalga as A Potential Biosorbent for Wastewater Treatment. Water 2019, 11, 1390. [Google Scholar] [CrossRef] [Green Version]
- Kreitschitz, A.; Kovalev, A.; Gorb, S. Plant Seed Mucilage as a Glue: Adhesive Properties of Hydrated and Dried-in-Contact Seed Mucilage of Five Plant Species. Int. J. Mol. Sci. 2021, 22, 1443. [Google Scholar] [CrossRef] [PubMed]
- Mijinyawa, A.H.; Durga, G.; Mishra, A. Evaluation of thermal degradation and melt crystallization behavior of taro mucilage and its graft copolymer with poly(lactide). SN Appl. Sci. 2019, 1, 1486. [Google Scholar] [CrossRef] [Green Version]
- Fekri, N.; Khayami, M.; Heidari, R.; Jamee, R. Chemical analysis of flax seed, sweet basil, dragon head and quince seed mucilages. Res. J. Biol. Sci. 2008, 3, 166–170. [Google Scholar]
- Hu, Q.; Shao, J.; Yang, H.; Yao, D.; Wang, X.; Chen, H. Effects of binders on the properties of bio-char pellets. Appl. Energy 2015, 157, 508–516. [Google Scholar] [CrossRef]
- Heaney, M.B. Electrical Conductivity and Resistivity; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, J.; Garcia, A.M.; Franco, M.A.; Gómez-Serrano, V. Electrical conductivity of carbon blacks under compression. Carbon 2005, 43, 741–747. [Google Scholar] [CrossRef]
- Singh, S.; Bothara, S. Morphological, physico-chemical and structural characterization of mucilage isolated from the seeds of Buchanania lanzan Spreng. Int. J. Health Allied Sci. 2014, 3, 33. [Google Scholar] [CrossRef]
- Delord, B.; Neri, W.; Bertaux, K.; Derre, A.; Ly, I.; Mano, N.; Poulin, P. Carbon nanotube fiber mats for microbial fuel cell electrodes. Bioresour. Technol. 2017, 243, 1227–1231. [Google Scholar] [CrossRef]
- Ramirez-Rico, J.; Gutierrez-Pardo, A.; Martinez-Fernandez, J.; Popov, V.; Orlova, T. Thermal conductivity of Fe graphitized wood derived carbon. Mater. Des. 2016, 99, 528–534. [Google Scholar] [CrossRef] [Green Version]
Sample Name | Moisture (%) | Volatiles (%) | Fixed Carbon (%) | Ash (%) |
---|---|---|---|---|
BC0 | 4.40 | 66.01 | 17.13 | 12.39 |
BC5 | 7.40 | 56.09 | 22.07 | 14.41 |
BC10 | 4.82 | 56.84 | 24.12 | 14.21 |
BC20 | 2.66 | 60.11 | 25.33 | 11.85 |
BC30 | 7.77 | 52.56 | 27.67 | 11.89 |
Samples | Diameter, mm | Height, mm | Compression Surface Area, mm2 |
---|---|---|---|
BC10 | 13.04 | 16.21 | 134.58 |
BC20 | 13.02 | 15.10 | 133.14 |
BC30 | 13.09 | 15.78 | 133.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiminaitė, I.; Lisauskas, A.; Striūgas, N.; Kryževičius, Ž. Fabrication and Characterization of Environmentally Friendly Biochar Anode. Energies 2022, 15, 112. https://doi.org/10.3390/en15010112
Kiminaitė I, Lisauskas A, Striūgas N, Kryževičius Ž. Fabrication and Characterization of Environmentally Friendly Biochar Anode. Energies. 2022; 15(1):112. https://doi.org/10.3390/en15010112
Chicago/Turabian StyleKiminaitė, Ieva, Aurimas Lisauskas, Nerijus Striūgas, and Žilvinas Kryževičius. 2022. "Fabrication and Characterization of Environmentally Friendly Biochar Anode" Energies 15, no. 1: 112. https://doi.org/10.3390/en15010112
APA StyleKiminaitė, I., Lisauskas, A., Striūgas, N., & Kryževičius, Ž. (2022). Fabrication and Characterization of Environmentally Friendly Biochar Anode. Energies, 15(1), 112. https://doi.org/10.3390/en15010112