Influences of Clay Mineral and Organic Matter on Nanoscale Pore Structures of the Cretaceous Lacustrine Shales in the Songliao Basin, Northeast China
Abstract
:1. Introduction
2. Geologic Background
3. Samples and Experiments
4. Results
4.1. Geochemical Characterization
4.2. Mineral Composition
4.3. Pore Type
4.4. Pore Structure before and after Extraction
5. Discussion
5.1. Relationships between Mineralogy and Pore Structure
5.2. Relationships between OM Composition and Pore Structure
5.3. Quantification of Relative OM Hosted Pore Volume
6. Conclusions
- After solvent extraction, the average SSA and PV of the 15 K2qn shales increase from 10.14 m2/g to 29.74 m2/g and from 0.0276 cm3/g to 0.0554 cm3/g respectively, indicating that the SOM could significantly occupy the nanopores and obscure the relationship between mineralogy and pore structure.
- The good positive correlations between the I/S content and SSA of the extracted samples indicate that most small pores (<10 nm) of the K2qn shales are associated with I/S mineral. The I/S pores show a characteristic PSD with a pore-size maxima at 3 nm.
- The SOM displays a clear negative correlation with SSA but no correlation with the PV of the initial shales, indicating that liquid hydrocarbon was more likely to be retained in the small pores. However, the overall positive correlation between the SOM content and PV of the extracted shales indicate that part of liquid hydrocarbon could be stored in the large pores when the oil content is high enough.
- SEM observation indicates that numbers of large pores associated with OM were developed in these shales. This is also suggested by the overall positive correlation between TOC content and pore volume of the extracted samples.
- A multiple linear regression model was applied to quantify the contribution of OM pores to the total PV. These K2qn shales show an average percentage of OM about 16%. The large OM pores are likely be an important pore type for the shale oil storage in the Songliao Basin.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, C.Z. Development challenges and future scientific and technological researches in China’s petroleum industry upstream. Acta Pet. Sin. 2020, 41, 1445–1464. (In Chinese) [Google Scholar]
- Jin, Z.J.; Wang, G.P.; Liu, G.X.; Gao, B.; Liu, Q.Y.; Wang, H.L.; Liang, X.P.; Wang, R.Y. Research progress and key scientific issues of continental shale oil in China. Acta Pet. Sin. 2021, 42, 821–835. (In Chinese) [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T.W. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Pommer, M.; Milliken, K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bull. 2015, 99, 1713–1744. [Google Scholar] [CrossRef]
- Cao, T.T.; Song, Z.G.; Wang, S.B.; Xia, J. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 35, 882–895. [Google Scholar] [CrossRef]
- Wang, H.J.; Wu, W.; Chen, T.; Yu, J.; Pan, J.N. Pore structure and fractal analysis of shale oil reservoirs: A case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China. J. Pet. Sci. Eng. 2019, 177, 711–723. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, T.W.; Loucks, R.G.; Shultz, J. Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Kuila, U.; McCarty, D.K.; Derkowski, A.; Fischer, T.B.; Topor, T.; Prasad, M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 2014, 135, 359–373. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Walters, C.C.; Ertas, D.; Freund, H. Petroleum Expulsion Part 3. A Model of Chemically Driven Fractionation during Expulsion of Petroleum from Kerogen. Energy Fuels 2006, 20, 309–319. [Google Scholar] [CrossRef]
- Cheng, P.; Xiao, X.; Fan, Q.; Gao, P. Oil Retention and Its Main Controlling Factors in Lacustrine Shales from the Dongying Sag, Bohai Bay Basin, Eastern China. Energies 2022, 15, 4270. [Google Scholar] [CrossRef]
- Han, Y.J.; Mahlstedt, N.; Horsfield, B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion. AAPG Bull. 2015, 99, 2173–2202. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2 Shale oil resource systems. In Shale Reservoirs-Giant Resources for the 21st Century: AAPG Memoir; Breye, J.A., Ed.; Worldwide Geochemistry LLC.: Humble, TX, USA, 2012; Volume 97, pp. 89–119. [Google Scholar]
- Cheng, P.; Xiao, X.; Tian, H.; Gai, H.; Zhou, Q.; Li, T.; Fan, Q. Differences in the distribution and occurrence phases of pore water in various nanopores of marine-terrestrial transitional shales in the Yangquan area of the northeast Qinshui Basin, China. Mar. Pet. Geol. 2022, 137, 105510. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Xia, J.; Song, Z.G.; Wang, S.B.; Zeng, W.Z. Preliminary study of pore structure and methane sorption capacity of the Lower Cambrian shales from the north Gui-zhou Province. J. Nat. Gas Sci. Eng. 2017, 38, 81–93. [Google Scholar] [CrossRef]
- Wang, M.; Ma, R.; Li, J.B.; Lu, S.F.; Li, C.M.; Guo, Z.L.; Li, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 833–846. [Google Scholar] [CrossRef]
- Wang, M.; Lu, S.F.; Huang, W.B.; Liu, W. Pore characteristics of lacustrine mudstones from the Cretaceous Qingshankou Formation, Songliao Basin. Interpret. Sub. 2017, 5, T373–T386. [Google Scholar] [CrossRef]
- Suarez-Ruiz, I.; Juliao, T.; Suarez-Garcia, F.; Marquez, R.; Ruiz, B. Porosity development and the influence of pore size on the CH4 adsorption capacity of a shale oil reservoir. Int. J. Coal Geol. 2016, 159, 1–17. [Google Scholar] [CrossRef]
- Julia, T.; Suarez-Ruiz, I.; Marquez, R.; Ruiz, B. The role of solid bitumen in the development of porosity in shale oil reservoir rocks of the Upper Cretaceous in Colombia. Int. J. Coal Geol. 2015, 147, 126–144. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.M. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 124, 173–181. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y.Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Milliken, K.L.; Esch, W.L.; Reed, R.M.; Zhang, T.W. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bull. 2012, 96, 1553–1578. [Google Scholar] [CrossRef]
- Li, Q.; You, X.L.; Jiang, Z.X.; Zhao, X.Z.; Zhang, R.F. A type of continuous petroleum accumulation system in the Shulu sag, Bohai Bay basin, eastern China. AAPG Bull. 2017, 101, 1791–1811. [Google Scholar] [CrossRef]
- Kuila, U.; Prasad, M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 2013, 61, 341–362. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Li, Y.; Ma, Y.; Yang, Y.; Li, C. Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos Basin, China. Fuel 2016, 185, 421–431. [Google Scholar] [CrossRef]
- Deng, H.C.; Fu, M.Y.; Zhou, W.; Zhang, L.Y.; Xue, X.H.; Li, Y.L.; Wang, D.L. The pores evolution of lacustrine shale induced by smectite-to-illite conversion and hydrocarbon generation: Upper Triassic Yanchang Formation, Ordos Basin, China. J. Pet. Sci. Eng. 2021, 202, 108460. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississipian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Cao, T.T.; Song, Z.G.; Wang, S.B.; Cao, X.X.; Li, Y.; Xia, J. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China. Mar. Pet. Geol. 2015, 61, 140–150. [Google Scholar] [CrossRef]
- Guo, H.J.; He, R.L.; Jia, W.L.; Peng, P.; Lei, Y.H.; Luo, X.R.; Wang, X.Z.; Zhang, L.X.; Jiang, C.F. Pore characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang Formation, southeastern Ordos Basin, China. Mar. Pet. Geol. 2018, 91, 279–296. [Google Scholar] [CrossRef]
- Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.-M.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin). Int. J. Coal Geol. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- Han, H.; Guo, C.; Zhong, N.N.; Pang, P.; Chen, S.J.; Lu, J.G.; Gao, Y. Pore structure evolution of lacustrine shales containing Type I organic matter from the Upper Cretaceous Qingshankou Formation, Songliao Basin, China: A study of artificial samples from hydrous pyrolysis experiments. Mar. Pet. Geol. 2019, 104, 375–388. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Littke, R. Numerical simulation of the thermal maturation, oil generation and migration in the Songliao Basin, Northeastern China. Mar. Pet. Geol. 1999, 16, 771–792. [Google Scholar] [CrossRef]
- Huang, W.B.; Salad Hersi, O.; Lu, S.F.; Deng, S.W. Quantitative modelling of hydrocarbon expulsion and quality grading of tight oil lacustrine source rocks: Case study of Qingshankou 1 member, central depression, Southern Songliao Basin, China. Mar. Pet. Geol. 2017, 84, 34–48. [Google Scholar] [CrossRef]
- Xu, J.; Bechtel, A.; Sachsenhofer, R.F.; Liu, Z.; Gratzer, R.; Meng, Q.; Song, Y. High resolution geochemical analysis of organic matter accumulation in the Qingshankou Formation, Upper Cretaceous, Songliao Basin (NE China). Int. J. Coal Geol. 2015, 141, 23–32. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Guo, Z.; Hong, W.; Dun, C.; Zhang, X.; Li, B.; Wu, L. Enrichment and distribution of shale oil in the Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Mar. Pet. Geol. 2017, 86, 751–770. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.L.; Fu, X.F.; Bai, Y.F.; Bai, L.H.; Jia, M.C.; He, B. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef]
- Huang, Z.K.; Chen, J.P.; Xue, H.T.; Wang, Y.J.; Wang, M.; Deng, C.P. Microstructural characteristics of the Cretaceous Qingshankou Formation shale, Songliao Basin. Pet. Explor. Dev. 2013, 40, 61–68. [Google Scholar] [CrossRef]
- Cao, X.; Gao, Y.; Cui, J.; Han, S.; Kang, L.; Song, S.; Wang, C. Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China. Energies 2020, 13, 2027. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.Z.; Zhou, G.Y.; Cao, T.T.; Song, Z.G. Pore structure of the Cretaceous lacustrine shales and shale-oil potential assessment in the Songliao Basin, Northeast China. Interpret. Sub. 2021, 9, T21–T33. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.X.; Wang, Z.W.; Lu, S.F. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.Q.; Jia, C.Z.; Xie, X.N.; Zhang, S.; Feng, Z.H.; Cross, T.A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China. Basin Res. 2010, 22, 79–95. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Bechtel, A.; Meng, Q.; Sun, P.; Jia, J.; Cheng, L.; Song, Y. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. 2015, 149, 9–23. [Google Scholar] [CrossRef]
- Feng, Z.H.; Fang, W.; Wang, X.; Huang, C.Y.; Huo, Q.L.; Zhang, J.H.; Huang, Q.H.; Zhang, L. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment. Sci. China Ser. D 2009, 52, 1559–1571. [Google Scholar] [CrossRef]
- Wang, S.B.; Song, Z.G.; Cao, T.T.; Song, X. The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar. Pet. Geol. 2013, 44, 112–119. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Liao, Y.H.; Wang, Y.P.; Xiong, Y.Q.; Peng, P.A. Organic geochemical characteristics, mineralogy, petrophysical properties, and shale gas prospects of the Wufeng-Longmaxi shales in Sanquan Town of the Nanchuan District, Chongqing. AAPG Bull. 2018, 102, 2239–2265. [Google Scholar] [CrossRef]
- Li, Y.; Xia, J.; Song, Z.G. A comparison study on hydrocarbon composition in bitumens I and II from Lower Cambrian marine shales in Guizhou Province, South China. Fuel 2019, 243, 332–341. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Cavelan, A.; Boussafir, M.; Rozenbaum, O.; Laggoun-Defarge, F. Organic petrography and pore structure characterization of low-mature and gas-mature marine organic-rich mudstones: Insights into porosity controls in gas shale systems. Mar. Pet. Geol. 2019, 103, 331–350. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Perez-Ramirez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Liang, S.; Wang, J.M.; Liu, Y.K.; Liu, B.; Sun, S.; Shen, A.Q.; Tao, F.Y. Oil Occurrence States in Shale Mixed Inorganic Matter Nanopores. Front. Earth Sci. 2022, 9, 833302. [Google Scholar] [CrossRef]
- Li, Y.L.; Cai, J.G.; Wang, X.J.; Hao, Y.Q.; Liu, Q. Smectite-illitization difference of source rocks developed in saline and fresh water environments and its influence on hydrocarbon generation: A study from the Shahejie Formation, Dongying Depression, China. Mar. Pet. Geol. 2017, 80, 349–357. [Google Scholar] [CrossRef]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar] [CrossRef]
- He, W.; Sun, Y.; Guo, W.; Shan, X.; Su, S.; Zheng, S.; Deng, S.; Kang, S.; Zhang, X. Organic Geochemical Characteristics of the Upper Cretaceous Qingshankou Formation Oil Shales in the Fuyu Oilfield, Songliao Basin, China: Implications for Oil-Generation Potential and Depositional Environment. Energies 2019, 12, 4778. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, C.; Zhang, S.; Wu, C.; Yang, K. Study on the Cretaceous turbidite and reservoir features in the Qingshankou Formation in northern Songliao Basin, NE China. Mar. Pet. Geol. 2016, 78, 797–806. [Google Scholar] [CrossRef]
- Zhu, X.J.; Cai, J.G.; Liu, Q.; Li, Z.; Zhang, X.J. Thresholds of petroleum content and pore diameter for petroleum mobility in shale. AAPG Bull. 2019, 103, 605–617. [Google Scholar] [CrossRef]
- Romero-Sarmiento, M.F.; Ducros, M.; Carpentier, B.; Lorant, F.; Cacas, M.C.; Pegaz-Fiornet, S.; Wolf, S.; Rohais, S.; Moretti, I. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale. Mar. Pet. Geol. 2013, 45, 315–330. [Google Scholar] [CrossRef]
- Cardott, B.J.; Landis, C.R.; Curtis, M.E. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway. Int. J. Coal Geol. 2015, 139, 106–113. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, Q.X.; Jiang, S.; Liu, K.Y.; Tan, J.Q.; Gao, F.L. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Gao, Y.; Zou, Y.R.; Liang, T.; Peng, P.A. Jump in the structure of Type I kerogen revealed from pyrolysis and 13C DP MAS NMR. Org. Geochem. 2017, 112, 105–118. [Google Scholar] [CrossRef]
Sample | Core | Depth (m) | TOC (wt%) | S1 (mg/g) | S2 (mg/g) | Tmax (℃) | HI (mg/g) | SOM (mg/g) |
---|---|---|---|---|---|---|---|---|
SK-7 | SK1 | 1709 | 2.44 | 1.50 | 14.46 | 441 | 593 | 4.96 |
SK-9 | 1725 | 2.56 | 2.33 | 13.79 | 440 | 539 | 6.69 | |
SK-11 | 1753 | 3.03 | 2.77 | 14.12 | 441 | 466 | 9.76 | |
Z42-2 | Z42 | 1968 | 2.75 | 1.02 | 15.58 | 444 | 567 | 3.73 |
Z42-4 | 2005 | 3.49 | 1.19 | 19.89 | 449 | 570 | 4.77 | |
X83-2 | X83 | 1936 | 2.10 | 1.01 | 10.65 | 447 | 507 | 4.81 |
X83-4 | 2025 | 2.37 | 0.69 | 12.61 | 446 | 532 | 2.59 | |
X83-6 | 2076 | 2.68 | 0.83 | 10.02 | 443 | 374 | 3.33 | |
QP-1 | QP1 | 2001 | 0.94 | 0.64 | 2.8 | 437 | 298 | 2.73 |
QP-2 | 2094 | 2.31 | 1.83 | 7.96 | 440 | 345 | 5.77 | |
YX58-4 | YX58 | 2031 | 1.61 | 1.29 | 6.04 | 445 | 375 | 4.54 |
YX58-5 | 2040 | 1.90 | 1.90 | 8.97 | 445 | 472 | 5.48 | |
YX58-10 | 2107 | 3.84 | 5.78 | 16.47 | 449 | 429 | 14.28 | |
Y47-2 | Y47 | 2318 | 1.95 | 2.00 | 4.23 | 420 | 217 | 5.85 |
Y47-5 | 2360 | 2.79 | 2.61 | 5.29 | 444 | 190 | 4.90 |
Sample | Quartz (wt%) | Feldspar (wt%) | Carbonates (wt%) | Pyrite (wt%) | I/S (wt%) | Chlorite (wt%) |
---|---|---|---|---|---|---|
SK-7 | 15.3 | 21.5 | 9.7 | 1.9 | 37.4 | 14.2 |
SK-9 | 19.4 | 24.5 | 2.4 | 1.8 | 38.9 | 13.0 |
SK-11 | 20.1 | 25.9 | 0.0 | 1.7 | 41.8 | 10.5 |
Z42-2 | 18.1 | 21.1 | 8.6 | 1.9 | 41.4 | 8.9 |
Z42-4 | 18.4 | 23.1 | 5.3 | 1.4 | 43.4 | 8.4 |
X83-2 | 23.5 | 30.7 | 4.6 | 1.5 | 39.7 | 0.0 |
X83-4 | 19.7 | 28.5 | 7.8 | 1.8 | 42.2 | 0.0 |
X83-6 | 21.4 | 27.8 | 9.9 | 1.6 | 39.3 | 0.0 |
QP-1 | 24.4 | 28.1 | 2.7 | 1.8 | 43.0 | 0.0 |
QP-2 | 18.4 | 24.5 | 4.6 | 1.7 | 50.8 | 0.0 |
YX58-4 | 17.7 | 23.1 | 6.7 | 0.0 | 45.7 | 6.8 |
YX58-5 | 22.4 | 32.3 | 1.9 | 1.7 | 31.9 | 9.8 |
YX58-10 | 23.7 | 16.5 | 7.6 | 0.0 | 42.5 | 9.7 |
Y47-2 | 23.7 | 27.6 | 2.7 | 1.8 | 44.2 | 0.0 |
Y47-5 | 17.7 | 24.0 | 5.8 | 1.1 | 41.8 | 9.6 |
Sample | Initial Shale Samples | Extracted Shale Samples | ||||
---|---|---|---|---|---|---|
SSA (m2/g) | PV (cm3/g) | ADP (nm) | SSA (m2/g) | PV (cm3/g) | ADP (nm) | |
SK-7 | 7.64 | 0.0353 | 14.10 | 21.89 | 0.0521 | 8.68 |
SK-9 | 7.21 | 0.0355 | 15.12 | 23.73 | 0.0520 | 7.91 |
SK-11 | 7.86 | 0.0373 | 15.56 | 33.89 | 0.0654 | 7.73 |
Z42-2 | 7.39 | 0.0182 | 9.33 | 26.28 | 0.0614 | 10.25 |
Z42-4 | 5.22 | 0.0142 | 9.43 | 38.87 | 0.0751 | 8.14 |
X83-2 | 20.86 | 0.0310 | 7.09 | 27.81 | 0.0360 | 5.69 |
X83-4 | 13.81 | 0.0279 | 6.98 | 25.28 | 0.0332 | 5.91 |
X83-6 | 9.75 | 0.0248 | 9.05 | 26.44 | 0.0543 | 8.31 |
QP-1 | 20.09 | 0.0357 | 6.26 | 31.19 | 0.0412 | 5.71 |
QP-2 | 14.43 | 0.0353 | 7.91 | 57.97 | 0.1147 | 7.83 |
YX58-4 | 15.51 | 0.0327 | 8.02 | 40.39 | 0.0534 | 6.11 |
YX58-5 | 3.49 | 0.0202 | 17.79 | 8.37 | 0.0245 | 10.27 |
YX58-10 | 4.00 | 0.0227 | 21.95 | 26.45 | 0.0536 | 8.82 |
Y47-2 | 6.53 | 0.0224 | 12.30 | 31.04 | 0.0609 | 7.99 |
Y47-5 | 8.23 | 0.0215 | 9.71 | 26.48 | 0.0528 | 9.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Song, Z. Influences of Clay Mineral and Organic Matter on Nanoscale Pore Structures of the Cretaceous Lacustrine Shales in the Songliao Basin, Northeast China. Energies 2022, 15, 7075. https://doi.org/10.3390/en15197075
Zeng W, Song Z. Influences of Clay Mineral and Organic Matter on Nanoscale Pore Structures of the Cretaceous Lacustrine Shales in the Songliao Basin, Northeast China. Energies. 2022; 15(19):7075. https://doi.org/10.3390/en15197075
Chicago/Turabian StyleZeng, Weizhu, and Zhiguang Song. 2022. "Influences of Clay Mineral and Organic Matter on Nanoscale Pore Structures of the Cretaceous Lacustrine Shales in the Songliao Basin, Northeast China" Energies 15, no. 19: 7075. https://doi.org/10.3390/en15197075
APA StyleZeng, W., & Song, Z. (2022). Influences of Clay Mineral and Organic Matter on Nanoscale Pore Structures of the Cretaceous Lacustrine Shales in the Songliao Basin, Northeast China. Energies, 15(19), 7075. https://doi.org/10.3390/en15197075