A Comparison of the Geochemical and Stable Carbon Isotopic Characteristics of Extracts Obtained from Source Rocks Using Different Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Soxhlet Extraction (SE) Procedure
2.3. Fractionation of the Extracts
2.4. Gas Chromatography-Mass Spectrometry (GC-MS)
2.5. Stable Carbon Isotope Analysis
3. Results and Discussion
3.1. Extraction Yield and Bulk Composition Comparison
3.2. Comparison of Biomarkers
3.3. Stable Carbon Isotope of the Extracts and Kerogen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.Y.; Urban, P.L. Online monitoring of Soxhlet extraction by chromatography and mass spectrometry to reveal temporal extract profiles. Anal. Chim. Acta 2015, 881, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Chen, F.L.; Wu, S.Q.; Zhang, L.; Wang, Y.X.; Xu, S. A simple and effective evaluation method for lacustrine shale oil based on mass balance calculation of Rock-Eval data. Appl. Geochem. 2022, 140, 105287. [Google Scholar] [CrossRef]
- Dong, T.; He, S.; Yin, S.Y.; Wang, D.X.; Hou, Y.G.; Guo, J.G. Geochemical characterization of source rocks and crude oils in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin. Mar. Petrol. Geol. 2015, 64, 173–188. [Google Scholar] [CrossRef]
- Han, Y.J.; Poetz, S.; Mahlstedt, N.; Horsfield, B. On the release of acidic NSO compounds from the oil-mature Barnett Shale using different solvents. J. Petrol. Sci. Eng. 2020, 185, 106605. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H.P.; Li, Z.; Liu, M. Oil physical status in lacustrine shale reservoirs–A case study on Eocene Shahejie Formation shales, Dongying Depression, East China. Fuel 2019, 257, 116027. [Google Scholar] [CrossRef]
- Hashemi-Nasab, F.S.; Parastar, H. Pattern recognition analysis of gas chromatographic and infrared spectroscopic fingerprints of crude oil for source identification. Microchem. J. 2020, 153, 104326. [Google Scholar] [CrossRef]
- Xing, L.T.; Xu, L.; Zhang, P.Z.; Zhang, J.; Wang, P. Organic geochemical characteristics of saline lacustrine source rocks: A case study from the Yingxi area, Qaidam basin, China. Geochem. Int. 2022, 60, 92–108. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.L.; Liu, Y.; Shen, W.L.; Chang, X.C.; Sun, Z.Q.; Xu, G.C. Organic geochemistry, distribution and hydrocarbon potential of source rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin. Mar. Petrol. Geol. 2019, 107, 382–396. [Google Scholar] [CrossRef]
- Stahl, W.J. Source rock-crude oil correlation by isotopic type-curves. Geochim. Cosmochim. Acta 1978, 42, 1573–1577. [Google Scholar] [CrossRef]
- Bjorøy, M.; Hall, K.; Hall, P.B.; Leplat, P.; Loberg, R. Biomarker analysis of oils and source rocks using a thermal extraction-GC-MS. Chem. Geol. 1991, 93, 1–11. [Google Scholar] [CrossRef]
- Yang, S.Y.; Qiao, H.G.; Cheng, B.; Hu, Q.H. Solvent extraction efficiency of an Eocene-aged organic-rich lacustrine shale. Mar. Petrol. Geol. 2021, 126, 104941. [Google Scholar] [CrossRef]
- Chen, J.P.; Deng, C.P.; Wang, H.T. Biomarker characteristics of extracts from source rocks in coal measures with different polarity solvents. Acta Geol. Sin. 2006, 80, 916–922, (In Chinese with English abstract). [Google Scholar]
- Armstroff, A.; Wilkes, H.; Schwarzbauer, J.; Littke, R.; Horsfield, B. Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age. Palaeogeogr. Palaeocl. 2006, 240, 253–274. [Google Scholar] [CrossRef]
- Guo, S.H.; Li, S.Y.; Qin, K.Z. CS2/NMP extraction of immature source rock concentrates. Org. Geochem. 2000, 31, 1783–1795. [Google Scholar]
- Lino, M.; Takanohashi, T.; Ohsuga, H.; Toda, K. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature-Effect of coal rank and synergism of the mixed solvent. Fuel 1988, 67, 1639–1647. [Google Scholar]
- White, C.M.; Rohar, P.C.; Veloski, G.A.; Anderson, R.R. Practical notes on the use of N-methyl-2-pyrrolidinone as a solvent for extraction of coal_and coal-related materials. Energ. Fuel 1997, 11, 1105–1106. [Google Scholar] [CrossRef]
- Chervenick, S.W.; Smart, R.B. Quantitative analysis of N-methyl-2-pyrrolidinone retained in coal extracts by thermal extraction g.c.-m.s. Fuel 1995, 74, 241–245. [Google Scholar] [CrossRef]
- Parera, J.; Santos, F.J.; Galceran, M.T. Microwave-assisted extraction versus Soxhlet extraction for the analysis of short-chain chlorinated alkanes in sediments. J. Chromatogr. A 2004, 1046, 19–26. [Google Scholar]
- Li, Z.P.; Wang, X.B.; Li, L.W.; Zhang, M.J.; Tao, M.X.; Xing, L.T.; Cao, C.H.; Xia, Y.Q. Development of new method of δ13C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry. J. Chromatogr. A 2014, 1372, 228–235. [Google Scholar] [CrossRef]
- Deng, C.P.; Wang, H.T.; Chen, J.P.; Zhang, D.J. Chemical features of extracts from source rocks in coal measures with different polarity solvents. Petrol. Explor. Dev. 2005, 32, 48–52, (In Chinese with English abstract). [Google Scholar]
- Duan, Y.; Wu, B.X.; Xu, L.; He, J.X.; Sun, T. Characterisation of n-alkanes and their hydrogen isotopic composition in sediments from Lake Qinghai, China. Org. Geochem. 2011, 42, 720–726. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.L.; Xiang, B.L.; Ren, J.L.; Li, E.T.; Wang, J.; Huang, P.; Wang, G.B.; Xu, H.; Pan, C.C. Molecular and carbon isotopic geochemistry of crude oils and extracts from Permian source rocks in the northwestern and central Junggar Basin, China. Org. Geochem. 2017, 113, 27–42. [Google Scholar] [CrossRef]
Samples | TOC (%) | TS (%) | Tmax (°C) | S1 (mg/g) | S2 (mg/g) | S3 (mg/g) | HI | OI | PI | MINC (%) |
---|---|---|---|---|---|---|---|---|---|---|
ZSD-09 | 1.96 | 1.69 | 443 | 0.46 | 13.10 | 0.13 | 670 | 7 | 0.03 | 2.54 |
ZSD-16 | 1.20 | 1.47 | 443 | 0.08 | 7.08 | 0.24 | 589 | 20 | 0.01 | 4.53 |
FY1-25 | 1.09 | 0.20 | 457 | 0.86 | 1.68 | 0.19 | 155 | 18 | 0.34 | 1.61 |
FY1-10 | 7.38 | 1.20 | 446 | 5.20 | 14.16 | 0.30 | 192 | 4 | 0.27 | 0.82 |
BY-2 | 6.86 | 3.78 | 385 | 0.05 | 0.06 | 0.15 | 1 | 2 | 0.46 | 1.44 |
Cam-shale | 3.39 | 2.18 | 444 | 0.38 | 0.53 | 0.29 | 16 | 9 | 0.42 | 3.12 |
J-101 coal | 35.47 | 0.50 | 429 | 1.38 | 90.18 | 2.02 | 254 | 6 | 0.02 | 0.58 |
He-6 coal | 80.57 | 0.44 | 453 | 10.49 | 141.94 | 3.41 | 176 | 4 | 0.07 | 1.08 |
G11-8 | 0.51 | 1.51 | 426 | 0.50 | 2.64 | 0.19 | 522 | 38 | 0.16 | 1.86 |
G11-18 | 1.62 | 1.90 | 430 | 0.96 | 7.78 | 0.35 | 479 | 22 | 0.11 | 0.93 |
Sample | Solvent | Carbon Number Range | Main Peak | ∑C22−/ ∑C23+ | Pr/Ph | Pr/nC17 | Ph/nC18 | OEP1 | OEP2 | CPI |
---|---|---|---|---|---|---|---|---|---|---|
ZSD-09 | A 1 | C13–C39 | nC21 | 0.95 | 1.21 | 0.73 | 0.62 | 1.12 | 1.15 | 1.16 |
B | C14–C35 | nC20 | 1.18 | 1.25 | 0.79 | 0.65 | 1.14 | 1.21 | 1.16 | |
ZSD-16 | A | C12–C39 | nC25 | 0.83 | 2.67 | 0.55 | 0.22 | 1.09 | 1.27 | 1.24 |
B | C13–C36 | nC23 | 0.86 | 2.46 | 0.55 | 0.22 | 1.08 | 1.33 | 1.29 | |
FY1-25 | A | C13–C32 | nC16 | 2.57 | 1.51 | 0.15 | 0.10 | 1.00 | 1.03 | 1.07 |
B | C12–C35 | nC16 | 3.91 | 1.65 | 0.16 | 0.11 | 0.99 | 1.05 | 1.10 | |
FY1-10 | A | C12–C32 | nC16 | 2.86 | 1.44 | 0.16 | 0.11 | 0.99 | 1.01 | 1.07 |
B | C12–C33 | nC16 | 3.04 | 1.47 | 0.17 | 0.12 | 1.00 | 1.06 | 1.08 | |
BY-2 | A | C12–C21 | nC14 | n.d. | 1.27 | 0.45 | 0.74 | 0.90 | n.d. | n.d. |
B | C14–C21 | nC16 | n.d. | 1.02 | 0.33 | 0.74 | 1.00 | n.d. | n.d. | |
Cam-shale | A | C12–C34 | nC27 | 3.96 | 1.08 | 0.12 | 0.12 | 1.01 | 1.03 | 1.06 |
B | C15–C29 | nC27 | 3.82 | 1.05 | 0.44 | 0.26 | 0.69 | 1.86 | 1.94 | |
J-101 coal | A | C12–C33 | nC23 | 1.32 | 7.69 | 2.13 | 0.25 | 1.00 | 1.48 | 1.69 |
B | C13–C33 | nC23 | 1.11 | 6.86 | 2.20 | 0.28 | 0.97 | 1.52 | 1.66 | |
He-6 coal | A | C12–C30 | nC16 | 10.27 | 2.34 | 0.04 | 0.02 | 1.01 | 1.22 | 1.42 |
B | C13–C29 | nC17 | 7.12 | 2.45 | 0.04 | 0.02 | 0.97 | 1.09 | 1.37 | |
G11-8 | A | C12–C36 | nC17 | 2.30 | 0.45 | 0.31 | 0.70 | 1.03 | 0.94 | 1.00 |
B | C13–C33 | nC17 | 2.35 | 0.57 | 0.41 | 0.78 | 1.04 | 1.01 | 1.05 | |
G11-18 | A | C13–C37 | nC27 | 0.19 | 0.29 | 1.12 | 2.98 | 0.98 | 1.08 | 1.09 |
B | C13–C34 | nC25 | 0.43 | 0.31 | 1.09 | 2.73 | 0.98 | 1.05 | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Liu, Y.; Li, Z. A Comparison of the Geochemical and Stable Carbon Isotopic Characteristics of Extracts Obtained from Source Rocks Using Different Solvents. Energies 2022, 15, 9198. https://doi.org/10.3390/en15239198
Xing L, Liu Y, Li Z. A Comparison of the Geochemical and Stable Carbon Isotopic Characteristics of Extracts Obtained from Source Rocks Using Different Solvents. Energies. 2022; 15(23):9198. https://doi.org/10.3390/en15239198
Chicago/Turabian StyleXing, Lantian, Yan Liu, and Zhongping Li. 2022. "A Comparison of the Geochemical and Stable Carbon Isotopic Characteristics of Extracts Obtained from Source Rocks Using Different Solvents" Energies 15, no. 23: 9198. https://doi.org/10.3390/en15239198
APA StyleXing, L., Liu, Y., & Li, Z. (2022). A Comparison of the Geochemical and Stable Carbon Isotopic Characteristics of Extracts Obtained from Source Rocks Using Different Solvents. Energies, 15(23), 9198. https://doi.org/10.3390/en15239198