Theoretical Investigation of Origin of Quantized Conduction in 2D Layered Ruddleson–Popper Perovskite Heterostructure for the RRAM Applications
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Structural Properties
3.2. Work Function
3.3. Electronic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, J.S.; Le, Q.V.; Choi, J.; Kim, H.; Kim, S.G.; Hong, K.; Moon, C.W.; Kim, T.L.; Kim, S.Y.; Jang, H.W. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces 2019, 11, 8155–8163. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liang, X.; Yuan, B.; Chen, V.; Li, H.; Hui, F.; Yu, Z.; Yuan, F.; Pop, E.; Wong, H.S.P.; et al. Electronic synapse made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, F.; Wang, S.; Wang, L.; Wang, X.; Wang, C.; Xie, Y.; Liu, Q. Emerging of two dimesional materials in novel memristor. Front. Phys. 2022, 17, 23204. [Google Scholar] [CrossRef]
- Duan, H.; Cheng, S.; Qin, L.; Zhang, X.; Xie, B.; Zhang, Y.; Jie, W. Low-Power Memristor Based on Two-Dimensional Materials. J. Phys. Chem. Lett. 2022, 13, 7130–7138. [Google Scholar] [CrossRef]
- Jagath, A.L.; Leong, C.H.; Kumar, T.N.; Almurib, H.A.F. Insight into physics-based RRAM models—Review. J. Eng. 2019, 2019, 4644–4652. [Google Scholar] [CrossRef]
- Kai, D.S.; Fang, H.X.; Dan, W.L.; Dong, L.C.; Pinaki, M. Memristor-based RRAM with applications. Sci. China Inf. Sci. 2012, 55, 1447–1460. [Google Scholar]
- Sun, L.; Hao, X.; Meng, Q.; Wang, L.; Liu, F.; Zhou, M. Polaronic resistive switching in ceria-based memory devices. Adv. Electron. Mater. 2019, 5, 1900271. [Google Scholar] [CrossRef]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Tsui, S.; Baikalov, A.; Cmaidalka, J.; Sun, Y.Y.; Wang, Y.Q.; Xue, Y.Y. Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 2004, 85, 317. [Google Scholar] [CrossRef] [Green Version]
- Seong, D.J.; Jo, M.; Lee, D.; Hwang, H. HPHA effect on reversible resistive switching of Pt ∕ Nb- doped SrTiO3schottky junction for nonvolatile memory application electrochem. Solid State Lett. 2007, 10, H168. [Google Scholar] [CrossRef]
- Nian, Y.B.; Strozier, J.; Wu, N.J.; Chen, X.; Ignatiev, A. Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides. Phys. Rev. Lett. 2007, 98, 146403. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Khan, S.A.; Rahmani, M.K.; Choi, J.; Batool, Z.; Rana, A.M.; Kim, S. Oxygen annealing effect on resistive switching characteristics of multilayer CeO2/Al/CeO2 resistive random-access memory. Mater. Res. Express 2020, 7, 016307. [Google Scholar] [CrossRef]
- Asif, M.; Kumar, A. Resistive switching in emerging materials and their characteristics for neuromorphic computing. Mater. Today Electron. 2022, 1, 100004. [Google Scholar] [CrossRef]
- Zhong, X.; Rungger, I.; Zapol, P.; Nakamura, H.; Asai, Y.; Heinonen, O. The effect of a Ta oxygen scavenger layer on HfO2-based resistive switching behavior: Thermodynamic stability, electronic structure, and low-bias transport. Phys. Chem. Chem. Phys. 2016, 18, 7502–7510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, U.; Ryu, H.; Mahata, C.; Khalil, R.M.A.; Imran, M.; Rana, A.M.; Kousar, F.; Kim, B.; Kim, Y.; Cho, S.; et al. Resistive switching characteristics and theoretical simulation of a Pt/aTa2O5/TiN synaptic device for neuromorphic applications. J. Alloys Compd. 2021, 877, 160204. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Belov, A.; Korolev, D.; Antonov, I.; Kotomina, V.; Kotina, A.; Gryaznov, E.; Sharapov, A.; Koryazhkina, M.; Kryukov, R.; et al. Multilayer metal-oxide memristive device with stabilized resistive switching. Adv. Mater. Technol. 2020, 5, 1900607. [Google Scholar] [CrossRef]
- Yang, H.C.; Seidel, J.; Kim, S.Y.; Rossen, P.B.; Yu, P.; Gajek, M.; Chu, Y.H.; Martin, L.W.; Holcomb, M.B.; He, Q.; et al. Electric modulation of conduction in multiferroicCa-doped BiFeO3films. Nat. Mater. 2009, 8, 485–493. [Google Scholar] [CrossRef]
- Gao, S.; Zeng, F.; Chen, C.; Tang, G.; Lin, Y.; Zheng, Z.; Song, C.; Pan, F. Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology 2013, 24, 335201. [Google Scholar] [CrossRef]
- Li, Y.; Long, S.; Liu, Y.; Hu, C.; Teng, J.; Liu, Q.; Lv, H.; Sune, J.; Liu, M. Conductance Quantization in Resistive Random Access Memory. NanoscaleRes. Lett. 2015, 10, 420. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, K.; Muruganathan, M.; Tsuruoka, T.; Mizuta, H.; Aono, M. Highly reproducible and regulated conductance quantization in a polymer-based atomic switch. Adv. Funct. Mater. 2017, 27, 1605104. [Google Scholar] [CrossRef]
- Rehman, M.M.; Rehman, H.M.M.U.; Gul, J.Z.; Kim, W.Y.; Karimov, K.S.; Ahmed, N. Decade of 2D-materials-based RRAM devices: A review. Sci. Technol. Adv. Mater. 2020, 21, 147–186. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Lei, P.; Tu, M.; Luo, S.; Jiang, T.; Jie, W.; Hao, J. Memristor based on inorganic and organic two-dimensional materials: Mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 2021, 13, 32606–32623. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, J.; Yan, X. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 2021, 31, 2006773. [Google Scholar] [CrossRef]
- Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Y.; Xu, K.; Cao, T.; Pan, X.; Wang, B.; et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Loh, L.; Li, S.; Chen, L.; Li, B.; Bosman, M.; Ang, K.W. Anomalous resistive switching in memristors based on two dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 2021, 4, 348–356. [Google Scholar] [CrossRef]
- Chen, S.; Mahmoodi, M.R.; Shi, Y.; Mahata, C.; Yuan, B.; Liang, X.; Wen, C.; Hui, F.; Akinwande, D.; Strukov, D.B.; et al. Wafer scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 2020, 3, 638–645. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Wang, L.; Chen, S.; Yu, Z.G.; Tan, W.C.; Macadam, N.; Hu, G.; Huang, L.; Chen, L.; et al. A fully printed flexible MoS2memristive artificial synapse with femto joule switching energy. Adv. Electron. Mater. 2019, 5, 1900740. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.F.; Zhang, Y.; Wang, N.; Luo, S.; Peng, K.; Wang, L.; Chen, H.; Gao, W.; Chen, X.H.; Bao, Y.; et al. Exploring low power and ultrafast memristor on p-type van der waalsSnS. Nano Lett. 2021, 21, 8800–8807. [Google Scholar] [CrossRef]
- Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z. 2D Material Based Synaptic Devices for Neuromorphic Computing. Adv. Funct. Mater. 2021, 31, 2005443. [Google Scholar] [CrossRef]
- Lee, T.S.; Lee, N.J.; Abbas, H.; Hu, Q.; Yoon, T.S.; Lee, H.H.; Shim, E.L.; Kang, C.J. A study on the resistance switching of Ag2Se and Ta2O5heterojunctions using structural engineering. Nanotechnology 2018, 29, 035202. [Google Scholar] [CrossRef]
- Yuan, B.; Liang, X.; Zhong, L.; Shi, Y.; Palumbo, F.; Chen, S.; Hui, F.; Jing, X.; Villena, M.A.; Jiang, L.; et al. 150 nm × 200 nm cross-point hexagonal boron nitride-based memristors. Adv. Electron. Mater. 2020, 6, 1900115. [Google Scholar] [CrossRef]
- Li, X.D.; Chen, N.K.; Wang, B.Q.; Li, X.B. Conductive mechanism in memristor at the thinnest limit: The case based on monolayer boron nitride. Appl. Phys. Lett. 2022, 121, 073505. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Q.; Chen, A.P.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Zhang, L.; Li, X.; Xiao, Z.; et al. Vacancy-induced synaptic behavior in 2D WS2nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pam, M.E.; Li, Y.; Chen, L.; Chien, Y.C.; Fong, X.; Chi, D.; Ang, K.W. Wafer-scale 2D hafnium diselenide based memristors crossbar array for energy-efficient neural network hardware. Adv. Mater. 2022, 34, 2103376. [Google Scholar] [CrossRef]
- Lei, P.; Duan, H.; Qin, L.; Wei, X.; Tao, R.; Wang, Z.; Guo, F.; Song, M.; Jie, W.; Hao, J. High-performance memristor based on 2D layered BiOInanosheet for low-power artificial optoelectronic synapses. Adv. Funct. Mater. 2022, 32, 2201276. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Q.; Xie, Y.; Zhao, H.; Li, C.; Cha, J.J.; Xia, F.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Cao, Y.; Wang, K.; Han, Z.; Liu, T.; Chen, W. Artificially created interfacial states enabled van der Waals heterostructure memory device. Nanotechnology 2022, 33, 175201. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, P.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renew. Sustain. Energy Rev. 2022, 166, 112614. [Google Scholar] [CrossRef]
- Huang, P.; Kazim, S.; Wang, M.; Ahmad, S. Toward Phase Stability: Dion−Jacobson Layered Perovskite for Solar Cells. ACS Energy Lett. 2019, 4, 2960–2974. [Google Scholar] [CrossRef]
- Luo, T.; Zhang, Y.; Xu, Z.; Niu, T.; Wen, J.; Lu, J.; Jin, S.; Liu, S.F.; Zhao, K. Compositional Control in 2D Perovskites with Alternating Cations in the Interlayer Space for Photovoltaics with Efficiency over 18%. Adv. Mater. 2019, 31, 1903848. [Google Scholar] [CrossRef]
- Ahmad, S.; Fu, P.; Yu, S.; Yang, Q.; Liu, X.; Wang, X.; Wang, X.; Guo, X.; Li, C. Dion-Jacobson Phase 2D Layered Perovskites for Solar Cells with Ultrahigh Stability. Joule 2019, 3, 794–806. [Google Scholar] [CrossRef]
- Nirala, G.; Yadav, D.; Upadhyay, S. Ruddlesden–Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. J. Adv. Ceram. 2020, 9, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Beznosikov, B.V.; Aleksandrov, K.S. Perovskite-like crystals of the Ruddlesden-Popper series. Crystallogr. Rep. 2000, 45, 792–798. [Google Scholar] [CrossRef]
- Sun, B.; Guo, T.; Zhou, G.; Wu, J.; Chen, Y.; Zhou, Y.N.; Wu, Y.A. A battery-like self selectingbiomemristor from earth-abundant natural biomaterials. ACS Appl. Biol. Mater. 2021, 4, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Joubert, D. From ultrasoftpseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar]
- Hussain, F.; Imran, M.; Rana, A.M.; Khalil, R.M.A.; Khera, E.A.; Kiran, S.; Javid, M.A.; Sattar, M.A.; Ismail, M. An insight into the dopant selection for CeO2-based resistive-switching memory system: A DFT and experimental study. Appl. Nanosci. 2018, 8, 839–851. [Google Scholar] [CrossRef]
- Darancet, P.; Millis, A.J.; Marianetti, C.A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 2014, 90, 045134. [Google Scholar] [CrossRef] [Green Version]
- Lan, G.; Song, J.; Yang, Z. A linear response approach to determine Hubbard U and its application to evaluate properties of Y2B2O7, B=transition metals 3d, 4d and 5d. J. Alloys Compd. 2018, 749, 909–925. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Pack, J.D.; Monkhorst, H.J. Special points for Brillouin-zone integrations—A reply. Phys. Rev. B. 1977, 16, 1748–1749. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Changzhi, A.; Xie, P.; Lin, S.; Wang, C.Z.; Lu, X. Tailoring bandgap of perovskite BaTiO3 by transition metals co-doping for visible-light photoelectrical applications: A first-principles study. Nanomaterials 2018, 8, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, U.; Alsuwian, T.; Imran, M.; Algadi, H.; Khera, E.A.; Khalil, R.M.A.; Mahata, C.; Hussain, F. Density functional theory insight into metal ions and vacancies for improved performance in storage devices. Int. J. Energy Res. 2021, 45, 1–13. [Google Scholar] [CrossRef]
- Fukuchi, A.T.; Nakagawa, R.; Arita, M.; Takahashi, Y. Smooth interfacial scavenging for resistive switching oxide via the formation of highly uniform layers of amorphous TaOx. ACS Appl. Mater. Interfaces 2018, 10, 5609–5617. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Q.; Sun, L.P. Ln2MO4 cathode materials for solid oxide fuel cells. Sci. China Chem. 2011, 54, 898–910. [Google Scholar] [CrossRef]
- Choisnet, J.; Mouron, P.; Crespin, M.; Aken, P.A.V.; Muller, W.F. Perovskite-like intergrowth structure of the reduced cuprate Nd2CuO3.5: A combination of defect and excess oxygen non-stoichiometry phenomena. J. Mater. Chem. 1994, 4, 895–898. [Google Scholar] [CrossRef]
- Cartoixa, X.; Rurali, R.; Sune, J. Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO2/metal structures. Phys. Rev. B 2012, 86, 165445. [Google Scholar] [CrossRef]
Computed Parameter | Sr2ZrO4 | TiN | TaN | |
---|---|---|---|---|
Space group | I4/mmm | F43M | Pm3m | |
Point group | 4/mmm | 43m | m3m | |
Crystal system | Tetragonal | Cubic | Cubic | |
Oxidation state of the constitution atoms | Sr2+, Zr4+, O2− | Ti3+, N3− | Ta1+, N1− | |
Bandgap (eV) | 3.105 eV | 0.00 | 0.00 | |
Formation energy (eV/atom) | −3.369 eV | −1.538 | −1.237 | |
Magnetic ordering | Nonmagnetic | Nonmagnetic | Nonmagnetic | |
Lattice Parameters (Å) | a | 3.814 | 4.50 | 2.654 |
b | 3.814 | 4.50 | 2.654 | |
c | 7.528 | 4.50 Å | 2.654 | |
Bond angle (°) | α | 144.964 | 90.000 | 90.000 |
β | 144.964 | 90.000 | 90.000 | |
γ | 49.270° | 90.000 | 90.000 |
Composite Name | Species Involved in Bond Length Calculations with Site Layer Detail | Bond Length (Ǻ) | ||||
---|---|---|---|---|---|---|
Unrelaxed Structure | Relaxed Structure | |||||
Pristine | Pristine + 1Vo | Pristine + 2Vo | ||||
Sr2ZrO4/TiN | Sr-O | (L1-L1) | 1.626 | 1.634 | 1.750 | 1.925 |
(L2-Ll) | 2.452 | 2.321 | 2.322 | 2.328 | ||
Zr-O | (L1-L1) | 1.448 | 1.652 | 1.998 | 1.695 | |
(L1-L2) | 2.0875 | 2.085 | 2.073 | 1.908 | ||
(L2-L2) | 3.345 | 3.255 | 3.345 | 3.344 | ||
Ti-N | 2.603 | 1.628 | 2.572 | 2.518 | ||
Ti-O | 5.062 | 4.362 | 5.052 | 5.805 | ||
N-O | 3.863 | 4.047 | 3.870 | 3.906 | ||
Sr2ZrO4/TaN | Sr-O | (L1-L1) | 1.6099 | 1.666 | 1.690 | 1.663 |
(L2-Ll) | 2.445 | 2.307 | 2.335 | 2.312 | ||
Zr-O | (L1-L1) | 1.434 | 1.625 | 1.989 | 1.672 | |
(L1-L2) | 2.0875 | 1.995 | 2.106 | 2.040 | ||
(L2-L2) | 3.255 | 3.345 | 3.255 | 3.255 | ||
Ta-N | 1.627 | 2.52 | 1.628 | 1.626 | ||
Ta-O | 4.288 | 4.974 | 4.331 | 4.370 | ||
N-O | 3.968 | 3.901 | 4.017 | 4.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasheed, U.; Imran, M.; Shakoor, A.; Niaz, N.A.; Hussain, F.; Khalil, R.M.A.; Alkhedher, M.; Eldin, S.M. Theoretical Investigation of Origin of Quantized Conduction in 2D Layered Ruddleson–Popper Perovskite Heterostructure for the RRAM Applications. Energies 2022, 15, 9410. https://doi.org/10.3390/en15249410
Rasheed U, Imran M, Shakoor A, Niaz NA, Hussain F, Khalil RMA, Alkhedher M, Eldin SM. Theoretical Investigation of Origin of Quantized Conduction in 2D Layered Ruddleson–Popper Perovskite Heterostructure for the RRAM Applications. Energies. 2022; 15(24):9410. https://doi.org/10.3390/en15249410
Chicago/Turabian StyleRasheed, Umbreen, Muhammad Imran, Abdul Shakoor, Niaz Ahmad Niaz, Fayyaz Hussain, Rana Muhammad Arif Khalil, Mohammad Alkhedher, and Sayed M. Eldin. 2022. "Theoretical Investigation of Origin of Quantized Conduction in 2D Layered Ruddleson–Popper Perovskite Heterostructure for the RRAM Applications" Energies 15, no. 24: 9410. https://doi.org/10.3390/en15249410
APA StyleRasheed, U., Imran, M., Shakoor, A., Niaz, N. A., Hussain, F., Khalil, R. M. A., Alkhedher, M., & Eldin, S. M. (2022). Theoretical Investigation of Origin of Quantized Conduction in 2D Layered Ruddleson–Popper Perovskite Heterostructure for the RRAM Applications. Energies, 15(24), 9410. https://doi.org/10.3390/en15249410