Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants
Abstract
:1. Introduction
2. State-of-the-Art Isolated MV Topologies for PV Power Plants
3. SiC-Based Isolated DC/DC Converter for MV PV Power Plants
- Continuous conduction mode (CCM): here, fsw is higher than fo (fsw > fo). The currents of the windings are continuous. The MOSFETs are turned off for currents proportional to the input power. The commutations of the rectifier’s diodes depend completely on the AC currents of the transformer; therefore, power control is realized by either phase-shifted modulation of the inverter legs [33,34] or changing fsw [32]. The latter method is preferred in this case since the phase-shifted modulation will cause current distortion in the circuit [35]. Moreover, this modulation technique can change the commutation mode of the switches. Thus, one of the inverter legs may operate in ZCS mode, which increases the switching losses.
- Discontinuous conduction mode (DCM): here, fsw is less than fo (fsw < fo), and the inverter legs are controlled in bipolar mode with a fixed duty cycle of 50%. The R-SAB converter is considered to be a passive device. The winding currents of the transformer reduce considerably at the end of each half of the switching period, and the MOSFETs are turned off at the magnetizing current of the transformer.
3.1. R-SAB Converter with Intergrated Maximum Power Point Tracking (MPPT) Algorithm
3.2. PET with MPPT Boost Chopper
3.2.1. Detailed Study on ISOP PET
3.2.2. Sizing and Evaluation of MPPT Three-Level Boost Chopper
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaeger-Waldau, A. PV Status Report 2019; EUR 29938 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12608-9. [CrossRef]
- Langner, A. Photovoltaics Report; Fraunhofer ISE: Freiburg, Germany, 2021. [Google Scholar]
- Large-Scale Photovoltaic Power Plants-Top 50. Available online: https://www.pvresources.com/en/pvpowerplants/top50pv.php (accessed on 8 November 2021).
- Alhuwaishel, F.; Allehyani, A.; Al-Obaidi, S.; Enjeti, P. A New Medium Voltage DC Collection Grid for Large Scale PV Power Plants with SiC Devices. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padova, Italy, 25–28 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Rakhshani, E.; Rouzbehi, K.; Sánchez, A.; Tobar, A.C.; Pouresmaeil, E. Integration of Large Scale PV-Based Generation into Power Systems: A Survey. Energies 2019, 12, 1425. [Google Scholar] [CrossRef] [Green Version]
- Bier, A.; Wiss, O.; Messaoudi, P. A 3 kV,18 kW Medium-Voltage PV Plant Demonstrator. Available online: https://docs.wixstatic.com/ugd/2c2db2_10c0956e790643b2829f75963fa5e187.pdf (accessed on 20 December 2021).
- Platzer, W.; Boie, I.; Ragwitz, M.; Kost, C.; Thoma, J.; Vogel, A.; Fluri, T.; Pfeiffer, W.; Burmeister, F.; Tham, N.; et al. Supergrid–Approach for the Integration of Renewable Energy in Europe and North Africa, Fraunhofer ISE: Freiburg, Germany, 12 March 2016.
- Scarpa, L.; Chicco, G.; Spertino, F.; Tumino, P.M.; Nunnari, M. Technical Solutions and Standards Upgrade for Photovoltaic Systems Operated Over 1500 Vdc. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6. [Google Scholar]
- Negishi, T.; Tsuda, R.; Ota, K.; Iura, S.; Yamaguchi, H. 3.3 kV All-SiC Power Module for Traction System Use. In Proceedings of the PCIM Europe 2017, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 16–18 May 2017; pp. 1–6. [Google Scholar]
- Murakami, T.; Sadamatsu, K.; Imaizumi, M.; Suekawa, E.; Hino, S. Comparative Study of Electrical Characteristics between Conventional and SBD-Embedded MOSFETs for next Generation 3.3kV SiC Modules. In Proceedings of the PCIM Europe digital days 2020, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–8 July 2020; pp. 1–5. [Google Scholar]
- Tafti, H.D.; Maswood, A.I.; Konstantinou, G.; Townsend, C.D.; Acuna, P.; Pou, J. Flexible Control of Photovoltaic Grid-Connected Cascaded H-Bridge Converters During Unbalanced Voltage Sags. IEEE Trans. Ind. Electron. 2018, 65, 6229–6238. [Google Scholar] [CrossRef]
- Rivera, S.; Kouro, S.; Wu, B.; Leon, J.I.; Rodríguez, J.; Franquelo, L.G. Cascaded H-Bridge Multilevel Converter Multistring Topology for Large Scale Photovoltaic Systems. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1837–1844. [Google Scholar] [CrossRef] [Green Version]
- Kouro, S.; Wu, B.; Moya, Á.; Villanueva, E.; Correa, P.; Rodríguez, J. Control of a Cascaded H-Bridge Multilevel Converter for Grid Connection of Photovoltaic Systems. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 3976–3982. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Zhao, T.; Mao, W.; Hu, Y.; Cao, R. Topological Comparison and Analysis of Medium-Voltage and High-Power Direct-Linked PV Inverter. CES Trans. Electr. Mach. Syst. 2019, 3, 327–334. [Google Scholar] [CrossRef]
- Bayat, H.; Yazdani, A. A Hybrid MMC-Based Photovoltaic and Battery Energy Storage System. IEEE Power Energy Technol. Syst. J. 2019, 6, 32–40. [Google Scholar] [CrossRef]
- Ertasgin, G.; Whaley, D.M.; Ertugrul, N.; Soong, W.L. Analysis of DC Link Energy Storage for Single-Phase Grid-Connected PV Inverters. Electronics 2019, 8, 601. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Guo, Y.; Zhu, J. Multiple-Input Multiple-Output Medium Frequency-Link Based Medium Voltage Inverter for Direct Grid Connection of Photovoltaic Arrays. In Proceedings of the 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, Korea, 26–29 October 2013; pp. 202–207. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Y.; Zhu, J. A Multilevel Medium-Voltage Inverter for Step-Up-Transformer-Less Grid Connection of Photovoltaic Power Plants. IEEE J. Photovolt. 2014, 4, 881–889. [Google Scholar] [CrossRef]
- Islam, R.; Mahfuz-Ur-Rahman, A.M.; Muttaqi, K.M.; Sutanto, D. State-of-the-Art of the Medium-Voltage Power Converter Technologies for Grid Integration of Solar Photovoltaic Power Plants. IEEE Trans. Energy Convers. 2019, 34, 372–384. [Google Scholar] [CrossRef]
- Lesnicar, A.; Marquardt, R. An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 14 June 2003; Volume 3, p. 6. [Google Scholar] [CrossRef]
- Ladoux, P.; Serbia, N.; Marino, P.; Rubino, L. Comparative Study of Variant Topologies for MMC. In Automation and Motion 2014 International Symposium on Power Electronics, Electrical Drives; IEEE: Ischia, Italy, 2014; pp. 659–664. [Google Scholar] [CrossRef]
- M2C–It’s Short for “Innovation”. Available online: https://new.siemens.com/fr/fr/produits/automatisation-entrainements/variateurs/medium-voltage-converters/m2c-technology.html (accessed on 20 December 2021).
- Sinamics Perfect Harmony GH150. Available online: https://new.siemens.com/global/en/products/drives/sinamics/medium-voltage-converters/sinamics-perfect-harmony-gh150.html (accessed on 20 December 2021).
- Sinamics SH150. Available online: https://new.siemens.com/fr/fr/produits/automatisation-entrainements/variateurs/medium-voltage-converters/sinamics-sh150.html (accessed on 20 December 2021).
- Lagier, T.; Dworakowski, P.; Buttay, C.; Ladoux, P.; Wilk, A.; Camail, P.; Anak Justin, E.C. Experimental Validation and Comparison of a SiC MOSFET Based 100 kW 1.2 kV 20 KHz Three-Phase Dual Active Bridge Converter Using Two Vector Groups. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–9. [Google Scholar]
- Czyz, P.; Guillod, T.; Krismer, F.; Huber, J.; Kolar, J.W. Design and Experimental Analysis of 166 kW Medium-Voltage Medium-Frequency Air-Core Transformer for 1:1-DCX Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 6, 506. [Google Scholar] [CrossRef]
- Mcmurray, W. Power Converter Circuits Having A High Frequency Link. Heredity 1970, 23, 3517300. [Google Scholar]
- McMurray, W. The Thyristor Electronic Transformer: A Power Converter Using a High-Frequency Link. IEEE Trans. Ind. Gen. Appl. 1971, 7, 451–457. [Google Scholar] [CrossRef]
- Perrin, R. La commutation douce: Le cas du convertisseur Flyback. Symp. Genie Electr. 2017, 20, 166. [Google Scholar] [CrossRef]
- Fortes, G.; Ladoux, P.; Fabre, J.; Flumian, D. Characterization of a 300 kW Isolated DC-DC Converter Using 3.3 kV SiC-MOSFETs. In PCIM Europe Digital Days 2021; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management; Éditions TI. Saint Denis: Saint-Denis, France, 2021; pp. 1–8. [Google Scholar]
- Erickson, R.; Maksimovic, D. Fundamentals of Power Electronics; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Foch, H.; Ladoux, P.; Piquet, H. Association de convertisseurs assurant une liaison énergétique. Tech. L’ingénieur Convert. Électriques Appl. 2010, 24, 556. [Google Scholar]
- De Doncker, R.W.A.A.; Divan, D.M.; Kheraluwala, M.H. A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73. [Google Scholar] [CrossRef]
- Xie, Y.; Ghaemi, R.; Sun, J.; Freudenberg, J.S. Implicit Model Predictive Control of a Full Bridge DC–DC Converter. IEEE Trans. Power Electron. 2009, 24, 2704–2713. [Google Scholar] [CrossRef]
- Krismer, F. Modeling and Optimization of Bidirectional Dual Active Bridge DC-DC Converter Topologies. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2010. [Google Scholar] [CrossRef]
- Fabre, J.; Ladoux, P.; Caron, H.; Verdicchio, A.; Blaquière, J.-M.; Flumian, D.; Sanchez, S. Characterization and Implementation of Resonant Isolated DC/DC Converters for Future MVdc Railway Electrification Systems. IEEE Trans. Transp. Electrif. 2021, 7, 854–869. [Google Scholar] [CrossRef]
- PLECS|Plexim. Available online: https://www.plexim.com/products/plecs (accessed on 20 December 2021).
- Fabre, J.; Blaquière, J.-M.; Verdicchio, A.; Ladoux, P.; Sanchez, S. Characterization in ZVS Mode of SiC MOSFET Modules for MVDC Applications. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Puglia, Italy, 2–4 July 2019; pp. 470–477. [Google Scholar] [CrossRef]
Nominal apparent power (Sn) | 130 kVA |
Turn ratio | 1:2 |
Operation frequency | 20–30 kHz |
Nominal primary voltage | 1000 V |
Nominal secondary voltage | 2000 V |
Primary winding resistance (Rcu1) | 3 mΩ |
Secondary winding resistance (Rcu2) | 16 mΩ |
Core resistance referred to primary side (Rfe) | 5.5 kΩ @ 20 kHz 9.5 kΩ @ 30 kHz |
Leakage inductance referred to primary side (Lleak) | 15 μH |
Magnetizing inductance referred to primary side (Lm) | 1 mH ± 30% |
Magnetic material | Ferrite |
Dimension | 350 mm × 450 mm × 400 mm |
Weight | 30 kg |
SiC MOSFET | SiC Schottky Diode | ||
---|---|---|---|
Electrical characteristics | Static characteristics (Tj = 175 °C) | Rds = 11.1 mΩ | Rd = 7.5 mΩ |
Switching Characteristics 1 (Vds = 0.9 kV, Tj = 175 °C) | aon = 2 × 10−8, bon =14 × 10−5 con = 1 × 10−3 | Eon = 0 J | |
aoff =3 × 10−8, boff = −0.15 × 10−5 coff = 1.031.0 × 10−3 | Eoff = 0 J | ||
Thermal characteristics | Junction-to-Case Thermal resistance | Rth(j-c)T = 0.09 K/W | Rth(j-c)D = 0.1 K/W |
Maximum junction temperature |
SiC Schottky Diode | ||
---|---|---|
Electrical characteristics | Static characteristics (Tj = 175 °C) | Rd = 3.8 mΩ |
Switching characteristics | Esw = 0 J | |
Thermal characteristics | Junction-to-Case Thermal resistance | Rth(j-c)D = 0.1 K/W |
Maximum junction temperature |
DC input voltage (Vin) | 2000 V |
DC output voltage (Vout) | 2000 V |
Switching frequency (fsw) | 20 kHz |
Frequency Ratio (fsw/fo) | 0.8 |
Resonant inductance (Lr) | 15 μH |
Resonant capacitance on primary side (Cp) | 3.8 μF |
Resonant capacitance on secondary side (Cs) | 1.9 μF |
Case temperature of MOSFET module (Tcase) | 85 °C |
Coupled inductor leakage inductance (L) | 350 μH ± 10% |
Rated DC current | 180A |
Current ripple | 18 A @ 20 kHz |
DC+AC winding resistance | 3.7 mΩ |
Core losses at 20 kHz | 50 W |
Magnetic material | Amorphous |
Dimension | 250 mm × 220 mm × 400 mm |
Weight | 40 kg |
DC PV voltage (Vpv) | 1000–1800 V |
DC output voltage (Vin) | 2000 V |
Switching frequency (fboost) | 10 kHz |
Case temperature of power module (Tcase) | 85 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, M.N.; Ladoux, P.; Martin, J.; Sanchez, S. Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants. Energies 2022, 15, 1038. https://doi.org/10.3390/en15031038
Ngo MN, Ladoux P, Martin J, Sanchez S. Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants. Energies. 2022; 15(3):1038. https://doi.org/10.3390/en15031038
Chicago/Turabian StyleNgo, Minh Nhut, Philippe Ladoux, Jérémy Martin, and Sébastien Sanchez. 2022. "Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants" Energies 15, no. 3: 1038. https://doi.org/10.3390/en15031038
APA StyleNgo, M. N., Ladoux, P., Martin, J., & Sanchez, S. (2022). Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants. Energies, 15(3), 1038. https://doi.org/10.3390/en15031038