Analytic Model of Threshold Voltage (VTH) Recovery in Fully Recessed Gate MOS-Channel HEMT (High Electron Mobility Transistor) after OFF-State Drain Stress
Abstract
:1. Introduction
2. Materials and Methods
3. Theory and Results
3.1. Theory of Vth Computation
3.2. Traps Location around the Gate
- tau_hole (s), tau_elec (s) are the de-trapping characteristic times constant for positive and negative charges, respectively.
- Nholeinitial (cm−3) and Nelecinitial (cm−3) are the densities of positive and negative charges initially trapped at a given level after Vds stress.
- Nhole(t) (cm−3) and Nelec(t) (cm−3) are the densities of positive and negative charges at a given level after recovery time t.
- t (s) is the recovery time after stress.
3.3. Test Protocol
- Id(Vgs) at Vds = 0.5 V with Vgs varying from −2 to 6 V and a Vth extraction at 10 µA/mm (Figure 4).
- Id(Vds) at Vgs = −2 V and Vds varying from 0 to 650 V corresponding to a stress in blocking mode during 10 s.
- Id(Vgs) at Vds = 0.5 V with Vgs varying from −2 to 6 V with Vth extraction carried out at 10 µA/mm. Allows us to measure the Vth in the GaN material after the Vds stress.
- Step c/ is repeated for several hours to follow the recovery time of the transistor due to the de-trapping of electrons and holes.
3.4. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ťapajna, M.; Kuzmík, J. A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors. Appl. Phys. Lett. 2012, 100, 113509. [Google Scholar] [CrossRef]
- Look, D.C.; Reynolds, D.C.; Hemsky, J.W.; Sizelove, J.R.; Jones, R.L.; Molnar, R.J. Defect Donor and Acceptor in GaN. Phys. Rev. 1997, 79, 2273. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yang, S.; Tang, Z.; Jiang, Q.; Liu, C.; Wang, M.; Shen, B.; Chen, K.J. Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer. Appl. Phys. Lett. 2015, 106, 051605. [Google Scholar] [CrossRef]
- Kammeugne, R.K.; Leroux, C.; Cluzel, J.; Vauche, L.; Le Royer, C.; Gwoziecki, R.; Biscarrat, J.; Gaillard, F.; Charles, M.; Bano, E.; et al. Analysis of MIS-HEMT Device Edge Behavior for GaN Technology Using New Differential Method. IEEE Trans. Electron. Devices 2020, 67, 4849. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Y.C.; Samudra, G.S.; Huang, C.-F. Design of novel normally-off AlGaN/GaN HEMTs with combined gate recess and floating charge structures. In Proceedings of the 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, 22–25 April 2013. [Google Scholar] [CrossRef]
- Götz, W.; Johnson, N.M. Deep level defects in n-type GaN. J. Appl. Phys. Lett. 1994, 65, 463–465. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z. Charge trapping and detrapping in polymeric materials. J. Appl. Phys. 2009, 106, 123707. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.; De Salvo, B.; Deleruyelle, D.; Gely, M.; Nicotra, G.; Lombardo, S.; Damlencourt, J.F.; Hollinger, P.; Martin, F.; Deleonibus, S. Reduction of fixed charges in atomic layer. Microelectron. Eng. 2005, 80, 210–213. [Google Scholar] [CrossRef]
- Lupták, R.; Lopes, J.M.J.; Lenk, S.; Holländer, B.; Özben, E.D.; Tiedemann, A.T.; Schnee, M.; Schubert, J.; Habicht, S.; Feste, S.; et al. Atomic layer deposition of HfO2 and Al2O3 layers on 300 mm Si wafers for gate stack technology. J. Vac. Sci. Technol. B 2011, 29, 01A301. [Google Scholar] [CrossRef]
- Dingemans, G.; Terlinden, N.M.; Verheijen, M.A.; van de Sanden, M.C.M.; Kessels, W.M.M. Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. J. Appl. Phys. 2011, 110, 093715. [Google Scholar] [CrossRef]
- Huang, S.; Yang, S.; Roberts, J.; Chen, K.J. Threshold Voltage Instability in Al2O3/GaN/AlGaN/GaN Metal–Insulator–Semiconductor High-Electron Mobility Transistors. Jpn. J. Appl. Phys. 2011, 50, 110202. [Google Scholar] [CrossRef]
- Joh, J.; Del Alamo, J.A. A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors. IEEE Trans. Electron. Devices 2011, 58, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Hastas, N.A.; Tassis, D.H.; Dimitriadis, C.A.; Kamarinos, G. Determination of interface and bulk traps in the subthreshold region of polycrystalline silicon thin-film transistors. IEEE Trans. Electron. Devices 2003, 50, 1991–1994. [Google Scholar] [CrossRef]
- Kim, H.; Yun, H.J.; Choi, S.; Choi, B.J. Interface trap characterization of AlN/GaN heterostructure with Al2O3, HfO2, and HfO2/Al2O3 dielectrics. J. Vac. Sci. Technol. B 2019, 37, 041203. [Google Scholar] [CrossRef]
- Rossetto, I.; Bisi, D.; de Santi, C.; Stocco, A.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Performance-Limiting Traps in GaN-Based HEMTs: From Native Defects to Common Impurities. In Power GaN Devices: Power Electronics and Power Systems; Springer: Cham, Switzerland, 2017; pp. 197–236. [Google Scholar]
- Monemar, B.O.; Paskov, P.P.; Pozina, G.; Hemmingsson, C.; Bergman, J.P.; Kawashima, T.; Amano, H.; Akasaki, I.; Paskova, T.; Figge, S.; et al. Evidence for Two Mg Related Acceptors in GaN. Phys. Rev. Lett. 2009, 102, 235501. [Google Scholar] [CrossRef] [PubMed]
- Kuzuhara, M.; Asubar, J.T.; Tokuda, H. AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation. Jpn. J. Appl. Phys. 2016, 55, 070101. [Google Scholar] [CrossRef]
- Henry, T.A.; Armstrong, A.; Kelchner, K.M.; Nakamura, S.; DenBaars, S.P.; Speck, J.S. Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor Deposition. Appl. Phys. Lett. 2012, 100, 082103. [Google Scholar] [CrossRef]
- Narita, T.; Kashi, T. Characterization of Defect and Deep Levels Fir GaN Power Devices; AIP Publishing: Melville, NY, USA, 2020. [Google Scholar]
- Vauche, L.; Chanuel, A.; Martinez, E.; Roure, M.C.; Le Royer, C.; Bécu, S.; Gwoziecki, R.; Plissonnier, M. Study of an Al2O3/GaN Interface for Normally Off MOS-Channel High-Electron-Mobility Transistors Using XPS Characterization: The Impact of Wet Surface Treatment on Threshold Voltage Vth. ACS Appl. Electron. Mater. 2021, 3, 1170–1177. [Google Scholar] [CrossRef]
Wafer and Design Name | Lg (µm) | Lgd (µm) | Interlayer (nm) | Al2O3 (nm) |
---|---|---|---|---|
wafer 1, design A | 2 Lg_ref | 1.5 Lgd_ref | 3 Thick_ref | ~30 |
wafer 1, design B | Lg_ref | Lgd_ref | 3 Thick_ref | ~30 |
wafer 2, design A | 2 Lg_ref | 1.5 Lgd_ref | Thick_ref | ~30 |
wafer 2, design B | Lg_ref | Lgd_ref | Thick_ref | ~30 |
Design A Wafer 1 | Design A Wafer 2 | Design B Wafer 1 | Design B Wafer 2 | |
---|---|---|---|---|
E1 | 0.06 | 0.03 | 0.05 | 0.002 |
E2 | 0.16 | 0.04 | 0.17 | 0.10 |
H1 (Carbon/Mg/(N vacancy)) | 0.37 | 0.34 | 0.23 | 0.28 |
H2 (Ga vacancy/(Nvacancy)) | 0.59 | 0.57 | 0.54 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escoffier, R.; Mohamad, B.; Buckley, J.; Gwoziecki, R.; Biscarrat, J.; Sousa, V.; Orsatelli, M.; Marcault, E.; Ranc, J.; Modica, R.; et al. Analytic Model of Threshold Voltage (VTH) Recovery in Fully Recessed Gate MOS-Channel HEMT (High Electron Mobility Transistor) after OFF-State Drain Stress. Energies 2022, 15, 677. https://doi.org/10.3390/en15030677
Escoffier R, Mohamad B, Buckley J, Gwoziecki R, Biscarrat J, Sousa V, Orsatelli M, Marcault E, Ranc J, Modica R, et al. Analytic Model of Threshold Voltage (VTH) Recovery in Fully Recessed Gate MOS-Channel HEMT (High Electron Mobility Transistor) after OFF-State Drain Stress. Energies. 2022; 15(3):677. https://doi.org/10.3390/en15030677
Chicago/Turabian StyleEscoffier, René, Blend Mohamad, Julien Buckley, Romain Gwoziecki, Jérome Biscarrat, Véronique Sousa, Marc Orsatelli, Emmanuel Marcault, Julien Ranc, Roberto Modica, and et al. 2022. "Analytic Model of Threshold Voltage (VTH) Recovery in Fully Recessed Gate MOS-Channel HEMT (High Electron Mobility Transistor) after OFF-State Drain Stress" Energies 15, no. 3: 677. https://doi.org/10.3390/en15030677
APA StyleEscoffier, R., Mohamad, B., Buckley, J., Gwoziecki, R., Biscarrat, J., Sousa, V., Orsatelli, M., Marcault, E., Ranc, J., Modica, R., & Iucolano, F. (2022). Analytic Model of Threshold Voltage (VTH) Recovery in Fully Recessed Gate MOS-Channel HEMT (High Electron Mobility Transistor) after OFF-State Drain Stress. Energies, 15(3), 677. https://doi.org/10.3390/en15030677