The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical-Biological Treatment Plant
2.2. Composition of Raw MSW
2.3. Testing of the Waste Features in a Biodrying Process
3. Results and Discussion
4. Conclusions
- The moisture of waste decreased to 50%.
- The carbon content expressed as the LOI decreased in waste to 66%.
- The NHV increased by more than 45%.
- The increase in the NHV was affected more by the decrease in moisture in waste than the change in the LOI. The loss of carbon was obtained as the effect of the process of biodegradation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu (accessed on 20 December 2021).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/search.html?scope=EURLEX&text=Directive+2008%2F98%2FEC+of+the+European+Parliament+and+of+the+Council+of+19+November+2008+on+Waste+and+Repealing+Certain+Directives&lang=es&type=quick&qid=1643509255451 (accessed on 20 December 2021).
- Waste Act (J.L. 2013, No. 0, Item. 21). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/O/D20130021.pdf (accessed on 19 December 2021).
- Minister of the Economy. Regulation of the Minister of the Economy of 16 of 16 July 2015 on the Acceptance of Waste for Landfilling (J.L.2015, No.0, Item. 1277); Minister of the Economy: Warsaw, Poland, 2015.
- Montejo, C.; Tonini, D.; Marrquez, M.C. Mechanical-biological treatment: Performance and potentials, An LCA of 8 MBT plants including waste characterization. J. Environ. Manag. 2013, 128, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dębicka, M.; Żygadło, M.; Latosińska, J. Investigations of bio-drying process of municipal solid waste. Ecol. Chem. Eng. A 2013, 20, 1461–1470. [Google Scholar]
- Kasiński, S.; Dębowski, M.; Olkowska, M.; Rudnicki, M. Analysis of the Long-Term Mass balance and Efficiency of Waste Recovery in a Municipal Waste Biodrying Plant. Energies 2021, 14, 7711. [Google Scholar] [CrossRef]
- Putranto, A.; Chen, X.D. A new model to predict diffusive self-heating during composting incorporating the reaction engineering approach (REA) framework. Bioresour. Technol. 2017, 232, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ab Jalil, N.A.; Basri, H.; Ahmad Basri, N.E.; Abushammala, M.F.M. Biodrying of municipal solid waste under different ventilation periods. Environ. Eng. Res. 2016, 21, 145–151. [Google Scholar] [CrossRef]
- Tambone, F.; Scagalia, B.; Scotti, S.; Adani, F. Effects of biodrying process on municipal solid waste properties. Bioresour. Technol. 2011, 102, 7443–7450. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.M.; Ma, Z.H.; Zhang, H.; Zhang, D.Q.; He, P.J. Biodrying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Manag. 2010, 30, 1165–1170. [Google Scholar] [CrossRef]
- Contreras-Cisneros, R.M.; Orozco-Álvarez, C.; Piña-Guzmán, A.B.; Ballesteros-Vásquez, L.C.; Molina-Escobar, L.; Alcántara-García, S.S.; Robles-Martínez, F. The Relationship of moisture and temperature to the concentration of O2 and CO2 during biodrying in semi-static piles. Processes 2021, 9, 520. [Google Scholar] [CrossRef]
- Gajewska, T.; Malinowski, M.; Szkoda, M. The Use of Biodrying to prevent self-heating of alternative fuel. Materials 2019, 12, 3039. [Google Scholar] [CrossRef] [Green Version]
- Psaltis, P.; Komilis, D. Environmental and economic assessment of the use of biodrying before thermal of municipal solid waste. Waste Manag. 2019, 83, 95–103. [Google Scholar] [CrossRef]
- Bilgin, M.; Tulun, S. Biodrying for municipal solid waste: Volume and weight reduction. Environ. Technol. 2015, 36, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tom, A.; Haridas, A.; Pawels, R. Biodrying Process Efficiency: Significance of reactor matrix height. Procedia Technol. 2016, 25, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Vidriales-Escobar, G.; Rentiera-Tamayo, R.; Alatriste-Mondragon, F.; Gonzalez-Ortega, O. Mathematical modelling of a composting process in a small-scale tubular bioreactor. Chem. Eng. Res. Des. 2017, 120, 360–371. [Google Scholar] [CrossRef]
- Tom, A.P.; Pawels, R.; Haridas, A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manag. 2016, 49, 64–72. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelková, D. Drying methods for municipal solid waste quality improvement in the developed and developing countries: A Review. Environ. Eng. Res. 2018, 24, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Evangelou, A.; Gerassimidou, S.; Mavrakis, N.; Komilis, D. Monitoring the performances of a real scale municipal solid waste composting and a biodrying facility using respiration activity indices. Environ. Monit. Assess. 2016, 188, 302. [Google Scholar] [CrossRef]
- Ab Jalil, N.A.; Basri, H.; Ahmad Basri, N.E.; Abushammala, M.F.M. The potential of biodrying as pre-treatment for municipal solid waste in Malaysia. J. Adv. Rev. Sci. Res. 2015, 7, 1–13. [Google Scholar]
- Ham, G.Y.; Matsuto, T.; Tojo, Y.; Matsuo, T. Material and moisture balance in a full-scale bio-drying MBT system for solid recovered fuel production. J. Mater. Cycles Waste Manag. 2020, 22, 167–175. [Google Scholar] [CrossRef]
- Institute of Meteorology and Water Management—National Research Institute. Available online: https://dane.imgw.pl (accessed on 20 December 2021).
- PN–Z–15006; Polish Standard. Investigation of Waste Morphology. Standards Association of Poland: Warsaw, Poland, 1993.
- Jędrczak, A.; Szpadt, R. Determination of the Test Methodology of the Sieve, Morphological and Chemical Composition of Municipal Wastes. Zielona Góra. 2006. Available online: www.mos.gov.pl (accessed on 10 December 2021).
- PN–EN 15442:2011; Solid Recovered Fuels—Methods for Sampling. Standards Association of Poland: Warsaw, Poland, 2011.
- PN–93/Z15008; Polish Standard. Fuel Property Testing. Determination of the Total Moisture. Standards Association of Poland: Warsaw, Poland, 1993.
- PN–EN 15169:2007; Polish Standard. Characterization of Waste—Determination of Loss on Ignition in Waste, Sludge and Sediments. Standards Association of Poland: Warsaw, Poland, 2007.
- PN–93/Z–15008; Polish Standard. Solid Municipal Wastes. Tests on the Fuel Properties. The Determination of Combustion Heat and the Calculation of the Calorific Value. Standards Association of Poland: Warsaw, Poland, 2004.
- ISO 1928:2009; Solid Mineral Fuels. Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value. ISO: Geneva, Switzerland, 2009.
- Dębicka, M.; Żygadło, M.; Latosińska, J. The effectiveness of biodrying waste treatment in full scale reactor. Open Chem. 2017, 15, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Żygadło, M.; Dębicka, M.; Latosińska, J. The bioconversion of municipal solid waste in the biodrying reactor. J. Environ. Earth Sci. 2019, 1, 33–37. [Google Scholar] [CrossRef]
- Hurka, M.; Malinowski, M. Assessment of the use of EWA bioreactor in the process of biodrying of undersize fraction manufactured from mixed municipal solid waste. Infrastruct. Ecol. Rural. Areas 2014, 4, 1127–1136. [Google Scholar]
- Negoi, R.M.; Ragazzi, M.; Apostol, T.; Rada, E.C.; Marculescu, C. Biodrying of Romanian municipal solid waste: An analysis of its viability. UPB Sci. Bull. Ser. C 2009, 71, 193–204. [Google Scholar]
Components | Contribution *, % d.m. |
---|---|
Glass | 18.0 ± 1.2 |
<10 mm Fraction | 15.7 ± 0.7 |
Kitchen waste | 16.6 ± 3.7 |
Mineral fraction | 14.0 ± 4.8 |
Paper | 11.1 ± 1.6 |
Multi-material materials | 5.8 ± 0.2 |
Plastic | 5.1 ± 0.2 |
Ceramic | 4.9 ± 0.3 |
Foils | 4.7 ± 0.02 |
Metals | 2.4 ± 0.02 |
Fabrics | 1.6 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latosińska, J.; Żygadło, M.; Dębicka, M. The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study. Energies 2022, 15, 1039. https://doi.org/10.3390/en15031039
Latosińska J, Żygadło M, Dębicka M. The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study. Energies. 2022; 15(3):1039. https://doi.org/10.3390/en15031039
Chicago/Turabian StyleLatosińska, Jolanta, Maria Żygadło, and Marlena Dębicka. 2022. "The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study" Energies 15, no. 3: 1039. https://doi.org/10.3390/en15031039
APA StyleLatosińska, J., Żygadło, M., & Dębicka, M. (2022). The Biological Drying of Municipal Waste in an Industrial Reactor—A Case Study. Energies, 15(3), 1039. https://doi.org/10.3390/en15031039