Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module
Abstract
:1. Introduction
1.1. Conventional Design for Cell-to-Module Ratio Calculation
1.2. CTM Definition
2. CTM Simulation Gain and Loss Mechanisms
CTM Gain and Loss Factors for 60-Cell Module
3. Modelling of the Solar Cell
4. CTM Simulation Input Parameter Setup
Input Parameters of Simulation for Highest Efficiency and Power of Module
5. CTM Optimization
5.1. CTM Efficiency Optimization
5.2. CTM Power Optimization
5.3. CTM Efficiency Comparison of Optimized and Standard Modules
5.4. CTM Power Comparison of Optimized and Standard Modules
5.5. Solar Cell Parameter Optimization for Efficiency Enhancement
5.6. Solar Cell Parameter Optimization for Power Improvement
5.7. Current Practices and Methodology Adopted for Designing Solar PV Modules in Manufacturing Industry and Future Trends
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.P.; Khoo, Y.S.; Chai, J.; Liu, Z.; Wang, Y. Cell-to-module power loss/gain analysis of silicon wafer-based PV modules. Photovolt. Int. 2016, 31, 98–105. [Google Scholar]
- Peters, M.; Guo, S.; Liu, Z. Full loss analysis for a multicrystalline silicon wafer solar cell PV module at short-circuit conditions. Prog. Photovolt. Res. Appl. 2016, 24, 560–569. [Google Scholar] [CrossRef]
- Hanifi, H.; Pfau, C.; Dassler, D.; Schneider, J.; Schindler, S.; Turek, M.; Bagdahn, J. Investigation of cell-to-module (CTM) ratios of PV modules by analysis of loss and gain mechanisms. Photovolt. Int. 2016, 32, 89–99. [Google Scholar]
- Li, B.; Segui, J.A.; Fountain, C.J.; Dubé, C.E.; Tsefrekas, B. Effect of encapsulant on cell-to-module efficiency loss in PV modules with ion implant and POCl3 cells. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 002336–002341. [Google Scholar]
- Halm, A.; Schneider, A.; Mihailetchi, V.D.; Libal, J.; Aulehla, S.; Galbiati, G.; Peter, K. Evaluation of cell to module losses for n-type IBC solar cells assembled with state of the art consumables and production equipment. In Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 2368–2372. [Google Scholar]
- Barretta, C.; Oreski, G.; Feldbacher, S.; Resch-Fauster, K.; Pantani, R. Comparison of Degradation Behavior of Newly Developed Encapsulation Materials for Photovoltaic Applications under Different Artificial Ageing Tests. Polymers 2021, 13, 271. [Google Scholar] [CrossRef]
- Haedrich, I.; Eitner, U.; Wiese, M.; Wirth, H. Unified methodology for determining CTM ratios: Systematic prediction of module power. Sol. Energy Mater. Sol. Cells 2014, 131, 14–23. [Google Scholar] [CrossRef]
- SmartCalc.Module. Available online: www.cell-to-module.com (accessed on 14 September 2021).
- Schneider, A.; Harney, R.; Koch, S. Impact of cell texturing quality on cell to module losses. Energy Procedia 2015, 77, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Mittag, M.; Pfreundt, A.; Shahid, J. Impact of solar cell dimensions on module power, efficiency and cell-to-module losses. In Proceedings of the 30th PV Solar Energy Conference, Jeju, South Korea, 13 November 2020; pp. 1–6. [Google Scholar]
- Haedrich, I.; Wirth, H.; Storz, M.; Klingebiel, G. PV Module efficiency analysis and optimization. In Proceedings of the European American Solar Deployment Conference, PV-Rollout, Boston, MA, USA, 10–11 February 2011. [Google Scholar]
- Wohlgemuth, J.H.; Cunningham, D.W.; Monus, P.; Miller, J.; Nguyen, A. Long term reliability of photovoltaic modules. In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference; IEEE: Piscataway, NJ, USA, 2006; Volume 2, pp. 2050–2053. [Google Scholar]
- Pfreundt, A.; Shahid, J.; Mittag, M. Cell-to-module Analysis beyond Standard Test Conditions. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC); IEEE: Piscataway, NJ, USA, 2020; pp. 0921–0926. [Google Scholar]
- Mittag, M.; Ebert, M. Systematic PV-module optimization with the cell-to-module (CTM) analysis software. Sol. Cells 2014, 4, 585. [Google Scholar]
- Shahid, J.; Karabacak, A.Ö.; Mittag, M. Cell-To-Module (CTM) Analysis for Photovoltaic Modules with Cell Overlap. In Proceedings of the 30th PV Solar Energy Conference, Jeju, Korea, 13 November 2020; pp. 1–5. [Google Scholar]
- Mittag, M.; Zech, T.; Wiese, M.; Blasi, D.; Ebert, M.; Wirth, H. Cell-to-Module (CTM) analysis for photovoltaic modules with shingled solar cells. In Proceedings of the IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 1531–1536. [Google Scholar]
- Eymard, J.; Barth, V.; Sicot, L.; Commault, B.; Bettinelli, A.; Basset, L.; Favre, W.; Derrier, A. CTMOD: A cell-to-module modelling tool applied to optimization of metallization and interconnection of high-efficiency bifacial silicon heterojunction solar module. AIP Conf. Proc. 2021, 2367, 020012. [Google Scholar]
- Du, Y.; Tao, W.; Liu, Y.; Le, Z.; Zhang, M. Cell-to-Module Variation of Optical and Photovoltaic Properties for Monocrystalline Silicon Solar Cells with Different Texturing Approaches. ECS J. Solid State Sci. Technol. 2017, 6, 332–338. [Google Scholar] [CrossRef]
- Dupré, O.; Levrat, J.; Champliaud, J.; Despeisse, M.; Boccard, M.; Ballif, C. Reassessment of cell to module gains and losses: Accounting for the current boost specific to cells located on the edges. AIP Conf. Proc. 2018, 1999, 90001–90007. [Google Scholar]
- Roy, J.N. Comprehensive analysis and modeling of cell to module (CTM) conversion loss during c-Si Solar Photovoltaic (SPV) module manufacturing. Sol. Energy 2016, 130, 184–192. [Google Scholar] [CrossRef]
- Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P. A cell-to-module-to-array detailed model for photovoltaic panels. Sol. Energy 2012, 86, 2695–2706. [Google Scholar] [CrossRef]
- Saw, M.H.; Khoo, Y.S.; Singh, J.P.; Wang, Y. Cell-to-module optical loss/gain analysis for various photovoltaic module materials through systematic characterization. Jpn. J. Appl. Phys. 2017, 56, 1–5. [Google Scholar] [CrossRef]
- Jansen, M.J.; Manshanden, P.; Slooff, L.H.; Bende, E.E.; Okel LA, G.; Danzl FJ, K. Cell to Module losses of an MWT module. In Proceedings of the European PV Solar Energy Conference and Exhibition EU PVSEC, Munich, Germany, 20–24 June 2016; pp. 1–4. [Google Scholar]
- Zhang, S.; Nampalli, N.; Payne, D.N.; Slade, A.; Edwards, M.B. Prediction and validation of solar cell-to-module and environmental losses based on refractive index data for various encapsulation materials. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC). A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC, Waikoloa, HI, USA, 10–15 June 2018; pp. 0660–0663. [Google Scholar]
- Ernst, M.; Haedrich, I.; Li, Y.; Lennon, A. Impact of (Multi-) Busbar design on the PERC cell-to-module yield under realistic conditions. In Proceedings of the Asia-Pacific Solar Research Conference, Canberra, Australia, 3–5 December 2019. [Google Scholar]
- Haedrich, I.; Surve, S.; Thomson, A. Cell to module (CTM) ratios for varying industrial cell types. In Proceedings of the 2015 Asia Pacific Solar Research Conference, Queensland, Australia, 8–10 December 2015; pp. 1–6. [Google Scholar]
- Shahid, J.; Mittag, M.; Heinrich, M. A multidimensional optimization approach to improve module efficiency, power and costs. In Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Brussels, Belgium, 24–28 September 2018; pp. 1–7. [Google Scholar]
- PV Lighthouse. Grid Calculator. Available online: https://www2.pvlighthouse.com.au/calculators/Grid%20calculator/Grid%20calculator.aspx (accessed on 28 November 2021).
- Haedrich, I.; Wiese, M.; Thaidigsman, B.; Eberlein, D.; Clement, F.; Eitner, U.; Wirth, H. Minimizing the Optical Cell-to-module Losses for MWT-modules. Energy Procedia 2013, 38, 355–361. [Google Scholar] [CrossRef]
- Guo, S.; Singh, J.P.; Peters, M.; Aberle, A.G.; Wong, J. Two-dimensional current flow in stringed PV cells and its influence on the cell-to-module resistive losses. Sol. Energy 2016, 130, 224–231. [Google Scholar] [CrossRef]
- Schneider, A.; Martínez JI, F.; Martínez, R.M.; Halm, A.; Rabanal-Arabach, J.; Harney, R. Material developments allowing for new applications, increased long term stability and minimized cell to module power losses. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 15 September 2015; pp. 153–156. [Google Scholar]
- Bermudez, V.; Perez-Rodriguez, A. Understanding the cell-to-module efficiency gap in Cu (In, Ga)(S, Se) 2 photovoltaics scale-up. Nat. Energy 2018, 3, 466–475. [Google Scholar] [CrossRef]
- Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.C.; Yi, J. A Review of the Degradation of Photovoltaic Modules for Life Expectancy. Energies 2021, 14, 4278. [Google Scholar] [CrossRef]
- TaiyangNews. Advanced Module Technologies 2021 Report. Available online: http://taiyangnews.info/advanced-module-technologies-2021-report-download/ (accessed on 28 November 2021).
- ITRPV. Available online: https://itrpv.vdma.org/documents/27094228/29066965/20210ITRPV/08ccda3a-585e-6a58-6afa-6c20e436cf41 (accessed on 28 November 2021).
k-Factors | Description | ||
---|---|---|---|
Geometrical losses | k1 | Module margin | Module margin inactive area |
k2 | Cell spacing | Inactive area lying between strings and cells | |
Optical losses | k3 | Cover reflection | Light reflection at the front interface of the module |
k4 | Cover absorption | Light absorption in the front cover | |
k5 | Cover/encapsulant reflection | Light reflection at front cover and encapsulation material interface | |
k6 | Encapsulant absorption | Light absorption in the material of encapsulation | |
k7 | Interconnection shading | Cell shading by interconnector ribbons | |
Optical gains | k8 | Cell/encapsulant coupling | Cell reflection reduction because of encapsulation (matching of refractive index) |
k9 | Finger coupling | Light reflection on the active cell area from the cell metallization | |
k10 | Interconnector coupling | Light reflection on the active cell area from the interconnector ribbons | |
k11 | Cover coupling | Internal light reflection at the rear cover of the module in the cell spacing area | |
Electrical losses | k12 | Cell interconnection | Electrical loss in cell interconnector ribbons |
k13 | String interconnection | Electrical loss in cell string interconnectors | |
k14 | Electrical mismatch | Electrical variations in cell parameters, including those resulting from cell assembly | |
k15 | Junction box and cabling | Electrical losses in diodes of the junction box and the cables |
INPUTS | ||||
---|---|---|---|---|
Solar-cell dimensions | Units | |||
Shape | Pseudo-square | |||
Length of cell | Xcell | 156.75 | mm | |
Width of cell | 156.75 | mm | ||
Diameter of cell | Dcell | 210 | mm | |
Area of cell | Acell | 24431.55 | mm2 | |
Solar-cell design | ||||
Measurement setup | Single cell | |||
Front contact | N grid | |||
Rear contact | P coating | |||
Number of elements | N | P | Unit | |
Busbars | NB | 5 | ||
Pads per busbar | NP | 2 | 4 | |
Fingers per busbar | NF | 124 | ||
Finger spacing | SF | 1.16 | mm | |
Element dimensions | N | P | ||
Pad length | LP | 77 | 19.5 | mm |
Pad width | WP | 0.8 | 1.8 | mm |
Busbar width | WB | 0.8 | 0.8 | mm |
Finger width | WF | 0.1 | mm | |
Material properties | ||||
Element | Material | Resistivity | Cross-section profile | Height |
Units | Ω-cm | µm | ||
N busbars/fingers | Ag, Screen Print Paste | 4.50 × 10−6 | Pseudo-rectangle | 30 |
P busbars/coating | Al, Screen Print Paste | 3.50 × 10−5 | Pseudo-rectangle | 30 |
OUTPUTS | ||||
Rs grid | Front metal coverage | A | V | |
Unit | Ω·cm2 | % | cm2 | cm3 |
N elements | ||||
N pads | 6.160 | 0.018 | ||
N busbars | 0.110 | 0 | ||
N fingers | 0.017 | 18.831 | 0.049 | |
N METAL (Front) | 0.017 | 10.274 | 25.101 | 0.05 |
P elements | ||||
P pads | 7.020 | 0.021 | ||
P busbars | 0.009 | 3.150 | 0.009 | |
P coating | 0.008 | 233.979 | 0.702 | |
P METAL (Rear) | 0.012 | 244.149 | 0.711 | |
TOTAL FOR CELL | 0.034 | 10.274 | 269.250 | 0.761 |
k-Factor | Module Layout Parameter | Unit | Optimized Value |
---|---|---|---|
Cells per string | 10 | ||
String per module | 6 | ||
k2 | Cell distance | mm | 0.5 |
k2 | String distance | mm | 0.5 |
k1 | Top margin | mm | 20 |
k1 | Bottom margin | mm | 10 |
k1 | Side margin | mm | 10 |
Cell determination | |||
k8, k14 | Cell selection | P-type Monofacial | |
k8, k14 | Cell type | H-pattern cell | |
k7 | n-side/front busbar | continuous busbar | |
p-side/rear busbar | contact pads | ||
Geometrical cell parameters | |||
Edge length | mm | 156.75 | |
Edge width | mm | 156.75 | |
Pseudo-square diameter | mm | 210 | |
k7, k10, k12 | Number of busbars | 5 | |
Electrical cell parameter (STC) | |||
k8, k14 | Efficiency | % | 22.4 |
k8, k14 | Isc | A | 9.91 |
k8, k14 | Voc | V | 0.679 |
k8, k14 | Pmpp | W | 5.74 |
k8, k14 | Impp | A | 9.47 |
k8, k14 | Vmpp | V | |
Isc change | % | −1.5 | |
Front side cell parameter | |||
k7, k10 | Width of busbar [b] | mm | 0.8 |
Distance between cell edge and busbar x [b] | mm | 1.4875 | |
Distance between cell edge and busbar y | mm | 15.6 | |
Distance between busbars y | mm | 31.2 | |
Effective width of finger (air) | % | 90 | |
Effective width of finger (encapsulated) | % | 60 | |
k9 | Total finger area | mm2 | 690 |
Back side cell parameter | |||
Number of pads per row [b] | 4 | ||
Size of pad [b] | mm2 | 34.4 | |
Distance between cell edge and first pad x [b] | mm | 14.875 | |
Distance between cell edge and first pad y | mm | 15.6 | |
Distance between pads x | mm | 16 | |
Distance between pads y | mm | 31.2 | |
Interconnection | |||
k10 | Cell front interconnection data | Cu-EPT1_SnPb_1.2x0.15 | |
k12 | Cell rear interconnection data | Cu-EPT1_SnPb_6.0x0.3 | |
Interconnection determination | |||
k7, k10 | Cell connector type | Rectangular ribbon | |
k7 | String connection type | Serial connection | |
Cell connection parameters | |||
k10, k12 | Width of core | mm | 1 |
Thickness of core | mm | 0.3 | |
Thickness of coating | µm | 20 | |
Specific resistivity of overall conductor [a] | Ω⋅mm2/m | 0.018 | |
String connection parameters | |||
k7, k13 | Width of core | mm | 6 |
Thickness of core | mm | 0.3 | |
Thickness of coating | µm | 20 | |
Specific resistivity of overall conductor [a] | Ω⋅mm2/m | 0.018 | |
Module Layer | |||
k3 | Load top cover data | Floatglass_3.2 mm | |
k5 | Load front encapsulant data | POE_standdard_UV_cutoff | |
k8, k14 | Load solar cell data | Cell_mono_5BB_22.4 | |
k11 | Load rear encapsulant data | POE_standdard_UV_cutoff | |
k11 | Load back cover data | PA_white | |
Top cover parameter | |||
k3 | Thickness | mm | 3.2 |
k4 | AR coating | Yes | |
Front encapsulant parameters | |||
k6 | Thickness | mm | 0.45 |
Solar-cell parameters | |||
k8, k14 | Thickness | mm | 0.19 |
Rear encapsulant parameters | |||
k11 | Thickness | mm | 0.45 |
k11 | Back-cover parameters | mm | 0.35 |
k11 | AR coating | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousuf, H.; Zahid, M.A.; Khokhar, M.Q.; Park, J.; Ju, M.; Lim, D.; Kim, Y.; Cho, E.-C.; Yi, J. Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module. Energies 2022, 15, 1176. https://doi.org/10.3390/en15031176
Yousuf H, Zahid MA, Khokhar MQ, Park J, Ju M, Lim D, Kim Y, Cho E-C, Yi J. Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module. Energies. 2022; 15(3):1176. https://doi.org/10.3390/en15031176
Chicago/Turabian StyleYousuf, Hasnain, Muhammad Aleem Zahid, Muhammad Quddamah Khokhar, Jinjoo Park, Minkyu Ju, Donggun Lim, Youngkuk Kim, Eun-Chel Cho, and Junsin Yi. 2022. "Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module" Energies 15, no. 3: 1176. https://doi.org/10.3390/en15031176
APA StyleYousuf, H., Zahid, M. A., Khokhar, M. Q., Park, J., Ju, M., Lim, D., Kim, Y., Cho, E. -C., & Yi, J. (2022). Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module. Energies, 15(3), 1176. https://doi.org/10.3390/en15031176