A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind
Abstract
:1. Introduction
2. Methods
3. Results
3.1. The Analog Ensemble
3.2. The Convolutional Neural Network
3.3. A Homogeneous Comparison of the AnEn and the CNN
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for use of climate scenarios developed from statistical downscaling methods. In Supporting Material of the Intergovernmental Panel on Climate Change; World Meteorological organization: Geneva, Switzerland, 2004; pp. 3–21. [Google Scholar]
- Sachindra, D.A.; Huang, F.; Barton, A.F.; Perera, B.J.C. Multi-model ensemble approach for statistically downscaling general circulation model output to precipitation. Q. J. R. Meteorol. Soc. 2014, 140, 1161–1178. [Google Scholar] [CrossRef] [Green Version]
- Beecham, S.; Rashid, M.; Chowdhury, R.K. Statistical downscaling of multi-site daily rainfall in a south Australian catchment using a generalized linear model. Int. J. Climatol. 2014, 34, 3654–3670. [Google Scholar] [CrossRef]
- Tripathi, S.; Srinivas, V.V.; Nanjundiah, R.S. Downscaling of precipitation for climate change scenarios: A support vector machine approach. J. Hydrol. 2006, 330, 621–640. [Google Scholar] [CrossRef]
- Sachindra, D.A.; Ahmed, K.; Rashid, M.M.; Shahid, S.; Perera, B.J.C. Statistical downscaling of precipitation using machine learning techniques. Atmos. Res. 2018, 212, 240–258. [Google Scholar] [CrossRef]
- Hsu, K.; Sorooshian, S.; Pan, B.; Aghakouchak, A. Improving precipitation estimation using convolutional neural network. Water Resour. Res. 2019, 55, 2301–2321. [Google Scholar]
- Lorenz, E.N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef] [Green Version]
- Zorita, E.; von Storch, H. The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Clim. 1999, 12, 2474–2489. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Dettinger, M.D.; Cayan, D.R. Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. In CEC PIER Project Report CEC-500-2007-123; California Energy Commission: Sacramento, CA, USA, 2008; 48p. [Google Scholar]
- Monache, L.D.; Eckel, F.A.; Rife, D.L.; Nagarajan, B.; Searight, K. Probabilistic weather prediction with an analog ensemble. Mon. Weather Rev. 2013, 141, 3498–3516. [Google Scholar] [CrossRef] [Green Version]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical downscaling using Localized Constructed Analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Bettoli, M.L. Analog Methods for Empirical-Statistical Downscaling. Oxford Research Encyclopedia of Climate Science. 2021. Available online: https://oxfordre.com/climatescience/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-738 (accessed on 31 January 2022).
- Ghilain, N.; Vannitsem, S.; Dalaiden, Q.; Goosse, H.; De Cruz, L.; Wei, W. Reconstruction of daily snowfall accumulation of 5.5 km resolution over Dronning Maud Land, Antarctica, from 1850 to 2014 using an analog-based downscaling technique. Earth Syst. Sci. Data Discuss 2021. [Google Scholar] [CrossRef]
- Benestad, R.E. Downscaling precipitation extremes: Correction of analog methods through PDF predictions. Theor. Appl. Climatol. 2010, 100, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; San Martin, D.; Brands, S.; Manzanas, R.; Herrera, S. Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Clim. 2013, 26, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Castellano, C.M.; De Gaetano, A.T. Downscaling extreme precipitation from CMIP5 simulations using historical analogs. J. Appl. Meteorol. Climatol. 2017, 56, 2421–2439. [Google Scholar] [CrossRef]
- Alessandrini, S.; Vandenberghe, F.; Hacker, J.P. Definition of typical-day dispersion patterns as a consequence of hazardous release. Int. J. Environ. Pollut. 2017, 62, 305–318. [Google Scholar] [CrossRef]
- González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J. Simulating European wind power generation applying statistical downscaling to reanalysis data. Appl. Energy 2017, 199, 155–168. [Google Scholar] [CrossRef]
- Meech, S.; Alessandrini, S.; Chapman, W.; Monache, L.D. Post-processing rainfall in a high-resolution simulation of the 1994 Piedmont flood. Bull. Atmos. Sci. Technol. 2020, 1, 373–385. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D. A Description of the Advanced Research WRF Version 3. NCAR Technical Note-475+STR. 2008. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.484.3656 (accessed on 24 February 2022).
- Keller, J.D.; Monache, L.D.; Alessandrini, S. Statistical downscaling of a high-resolution precipitation reanalysis using the analog ensemble method. J. Appl. Meteorol. Climatol. 2017, 56, 2081–2095. [Google Scholar] [CrossRef]
- Sperati, S.; Alessandrini, S.; Monache, L.D. Gridded probabilistic weather forecasts with an analog ensemble. Q. J. R. Meteorol. Soc. 2017, 143, 2874–2885. [Google Scholar] [CrossRef]
- Alessandrini, S.; Monach, L.D.; Rozoff, C.M.; Lewis, W.E. Probabilistic prediction of tropical cyclone intensity with an analog ensemble. Mon. Weather Rev. 2018, 146, 1723–1744. [Google Scholar] [CrossRef]
- Vanvyve, E.; Monache, L.D.; Monaghan, A.J.; Pinto, J.O. Wind resource estimates with an analog ensemble approach. Renew. Energy 2015, 74, 761–773. [Google Scholar] [CrossRef]
- Chollet, F. Keras: The Python Deep Learning Library. 2015. Available online: https://keras.io (accessed on 24 February 2022).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; Available online: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi (accessed on 24 February 2022).
Layer No. | Type | Input Size | Output Size | Parameters |
---|---|---|---|---|
1 | Input | 66 × 66 × 5 | 66 × 66 × 6 | --- |
2 | Conv2D | 66 × 66 × 6 | 66 × 66 × 6 | Filter size (6), kernel (5,5), activation: leaky ReLU (alpha = 0.2), batch norm, dropout (0.2) |
3 | Max Pooling | 66 × 66 × 6 | 33 × 33 × 6 | Pool size: (2,2) |
4 | Conv2D | 33 × 33 × 6 | 33 × 33 × 12 | Filter size (6), kernel (5,5), activation: leaky ReLU (alpha = 0.2), batch norm, dropout (0.2) |
5 | Flatten | 33 × 33 × 12 | 1 × 13,068 | --- |
6 | Dense | 1 × 13,068 | 1 × 100 | Nodes (100), activation: leaky ReLU (alpha = 0.2), batch norm |
7 | Dense | 1 × 100 | 1 × 4356 | Nodes (4356), activation: linear |
8 | Output | 1 × 4356 | 1 × 4356 | Loss (MSE), Adam optimizer (0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozoff, C.M.; Alessandrini, S. A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind. Energies 2022, 15, 1718. https://doi.org/10.3390/en15051718
Rozoff CM, Alessandrini S. A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind. Energies. 2022; 15(5):1718. https://doi.org/10.3390/en15051718
Chicago/Turabian StyleRozoff, Christopher M., and Stefano Alessandrini. 2022. "A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind" Energies 15, no. 5: 1718. https://doi.org/10.3390/en15051718
APA StyleRozoff, C. M., & Alessandrini, S. (2022). A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind. Energies, 15(5), 1718. https://doi.org/10.3390/en15051718