Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications
Abstract
:1. Introduction
1.1. Insulating Liquids for Power Transformers
1.2. Dielectric Breakdown Strength of Nanoliquids
1.3. Thermal Properties of Nanomodified Dielectric Liquids
1.4. Streaming Electrification of Nano-Based Insulating Liquids
1.5. Purpose and Scope of the Research
2. Materials and Methods
2.1. Preparation of Nanoliquids
2.2. Measurement of Physicochemical and Electrical Properties
2.3. Streaming Electrification Mathematical Model and Measurements
3. Results
3.1. The Study on Physicochemical and Electrical Properties of Nanofluids
3.2. Streaming Electrification Studies on Nanofluids
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boss, P.; Lorin, P.; Viscardi, A.; Harley, J.W.; Isecke, J. Economical aspects and experiences of power transformer on-line monitoring. In CIGRE Session 2000; CIGRE: Paris, France, 2000. [Google Scholar]
- The Council on Large Electric Systems (CIGRE). CIGRE Technical Brochure 248; Economics of Transformer Management; CIGRE: Paris, France, 2004. [Google Scholar]
- Schneider, C.; Staninovski, J.; Cheim, L.; Vines, J.; Varadan, S. Transformer reliability taking predictive maintenance program to the next level. In CIGRE Study Committee A2 Colloquium; CIGRE: Cracow, Poland, 2017. [Google Scholar]
- Christina, A.J.; Salam, M.A.; Rahman, Q.M.; Wen, F.; Ang, S.P.; Voon, W. Causes of transformer failures and diagnostic methods—A review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar]
- Liao, R.; Liang, S.; Sun, C.; Yang, L.; Sun, H. A comparative study of thermal aging of the transformer insulation paper impregnated in natural ester and in mineral oil. Eur. Trans. Electr. Power 2010, 20, 518–533. [Google Scholar] [CrossRef]
- Martin, D.; Cui, Y.; Ekanayake, C.; Ma, H.; Saha, T. An updated model to determine the life remaining of transformer insulation. IEEE Trans. Power Deliv. 2015, 30, 395–402. [Google Scholar] [CrossRef]
- Wolny, S.; Krotowski, A. Analysis of polarization and depolarization currents of samples of nomex®910 cellulose–aramid insulation impregnated with mineral oil. Energies 2020, 13, 6075. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z.; Przybylek, P.; Lopatkiewicz, R.; Marcinkowska, A.; Druzynski, L.; Boczar, T.; Tomczewski, A. Effect of moisture on the thermal conductivity of cellulose and aramid paper impregnated with various dielectric liquids. Energies 2020, 13, 4433. [Google Scholar] [CrossRef]
- Zheng, P.Y.; Qin, H.N. Characteristics, processing and application of naphthenic base oil. Mod. Bus. Trade Ind. 2008, 20, 267–269. [Google Scholar]
- Fofana, I. 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Laskar, S. Electrical insulating liquid: A review. J. Adv. Dielectr. 2017, 7, 1730001. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tang, C.; Huang, B.; Hao, J.; Chen, G. Review of research progress on the electrical properties and modification of mineral insulating oils used in power transformers. Energies 2018, 11, 487. [Google Scholar] [CrossRef] [Green Version]
- Fernández, I.; Ortiz, A.; Delgado, F.; Renedo, C.; Pérez, S. Comparative evaluation of alternative fluids for power transformers. Electr. Power Syst. Res. 2013, 98, 58–69. [Google Scholar] [CrossRef]
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K.; Jhala, A.S. A review on critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers: Part 1. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 873–880. [Google Scholar] [CrossRef]
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K.; Jhala, A.S. A review on critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers: Part II. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1705–1712. [Google Scholar] [CrossRef]
- Ghani, S.A.; Muhamad, N.A.; Noorden, Z.A.; Zainuddin, H.; Bakar, N.A.; Talib, M.A. Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electr. Pow. Syst. Res. 2018, 163, 655–667. [Google Scholar] [CrossRef]
- Mohan Rao, U.; Fofana, I.; Jaya, T.; Rodriguez-Celis, E.M.; Jalbert, J.; Picher, P. Alternative dielectric fluids for transformer insulation system: Progress, challenges, and future prospects. IEEE Access 2019, 7, 184552–184571. [Google Scholar] [CrossRef]
- Tokunaga, J.; Nikaido, M.; Koide, H.; Hikosaka, T. Palm fatty acid ester as biodegradable dielectric fluid in transformers: A review. IEEE Elect. Insul. Mag. 2019, 35, 34–46. [Google Scholar] [CrossRef]
- Rozga, P.; Beroual, A.; Przybylek, P.; Jaroszewski, M.; Strzelecki, K. A review on synthetic ester liquids for transformer applications. Energies 2020, 13, 6429. [Google Scholar] [CrossRef]
- Dean, S.W.; Mansoori, G.A.; Fauzi Soelaiman, T.A. Nanotechnology—An introduction for the standards community. J. ASTM Int. 2005, 2, 13110–13122. [Google Scholar] [CrossRef] [Green Version]
- Shoghl, S.N.; Jamali, J.; Moraveji, M.K. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp. Therm. Fluid Sci. 2016, 74, 339–346. [Google Scholar] [CrossRef]
- Patil, M.S.; Seo, J.H.; Kang, S.J.; Lee, M.Y. Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 2016, 9, 840. [Google Scholar] [CrossRef] [Green Version]
- Fal, J.; Mahian, O.; Żyła, G. Nanofluids in the service of high voltage transformers: Breakdown properties of transformer oils with nanoparticles, a review. Energies 2018, 11, 2942. [Google Scholar] [CrossRef] [Green Version]
- Primo, V.A.; Garcia, B.; Albarracin, R. Improvement of transformer liquid insulation using nanodielectric fluids: A review. IEEE Electr. Insul. Mag. 2018, 34, 13–26. [Google Scholar] [CrossRef]
- Ahmad, F.; Khan, A.A.; Khan, Q.; Hussain, M.R. State-of-art in nano-based dielectric oil: A review. IEEE Access 2019, 7, 13396–13410. [Google Scholar] [CrossRef]
- Bhatt, M.A.; Bhatt, P.J. A review on electrical characteristics of nanofluid based transformer oil. Indian J. Sci. Technol. 2019, 12, 27. [Google Scholar] [CrossRef]
- Suhaimi, S.N.; Rahman, A.R.A.; Din, M.F.M.; Hassan, M.Z.; Ishak, M.T.; bin Jusoh, M.T. A review on oil-based nanofluid as next-generation insulation for transformer application. J. Nanomater. 2020, 2020, 2061343. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995; pp. 66–74. [Google Scholar]
- Segal, V.; Rabinovich, A.; Nattrass, D.; Raj, K.; Nunes, A. Experimental study of magnetic colloidal fluids behavior in power transformers. J. Magn. Magn. Mater 2000, 215–216, 513–515. [Google Scholar] [CrossRef]
- Sima, W.; Chen, J.; Sun, P.; Zhang, H.; Ye, L.; He, J.; Yin, Z.; Shao1, Q. Breakdown characteristics of c60 modified transformer oil. In Proceedings of the IEEE International Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico, 21–24 October 2018; pp. 125–128. [Google Scholar]
- Khelifa, H.; Vagnon, E.; Beroual, A. AC breakdown voltage and partial discharge activity in synthetic ester-based fullerene and graphene nanofluids. IEEE Access 2022, 10, 5620–5634. [Google Scholar] [CrossRef]
- Choi, C.; Yoo, H.S.; Oh, J.M. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr. Appl. Phys. 2008, 8, 710–712. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z.; Marcinkowska, A. Effects of nanoparticles materials on heat transfer in electro-insulating liquids. Appl. Sci. 2018, 8, 2538. [Google Scholar] [CrossRef] [Green Version]
- Olmo, C.; Mendez, C.; Ortiz, F.; Delgado, F.; Valiente, R.; Werle, P. Maghemite nanofluid based on natural ester: Cooling and insulation properties assessment. IEEE Access 2019, 7, 145851–145860. [Google Scholar] [CrossRef]
- Olmo, C.; Mendez, C.; Ortiz, F.; Delgado, F.; Ortiz, A. Titania nanofluids based on natural ester: Cooling and insulation properties sssessment. Nanomaterials 2020, 10, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksamit, P.; Zmarzły, D. C60 as flow electrification inhibitor in mineral insulating oil. J. Electrost. 2011, 69, 195–199. [Google Scholar] [CrossRef]
- Aksamit, P.; Zmarzły, D.; Boczar, T. Electrostatic properties of aged fullerene-doped mineral oil. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1459–1462. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Harid, N.; Griffiths, H. Investigation on flow electrification of ester-based TiO2 nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1492–1500. [Google Scholar] [CrossRef]
- Zdanowski, M.; Maleska, M. Streaming electrification of insulating liquid mixtures. Arch. Electr. Eng. 2019, 68, 387–397. [Google Scholar]
- Zdanowski, M. Electrostatic charging tendency analysis concerning retrofilling power transformers with Envirotemp FR3 natural ester. Energies 2020, 13, 4420. [Google Scholar] [CrossRef]
- Zdanowski, M. Streaming electrification of Nycodiel 1255 synthetic ester and Trafo En mineral oil mixtures by using rotating disc method. Energies 2020, 13, 6159. [Google Scholar] [CrossRef]
- Abedian, B.; Sonin, A.A. Theory for Electric Charging in Turbulent Pipe Flow. J. Fluid Mech. 1981, 120, 199–217. [Google Scholar] [CrossRef]
- Nadolny, Z.; Dombek, G.; Przybylek, P. Thermal properties of a mixture of mineral oil and synthetic ester in terms of its applications in the transformer. In Proceedings of the IEEE International Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 857–860. [Google Scholar]
- Chen, J.; Sun, P.; Sima, W.; Shao, Q.; Ye, L.; Li, C. A promising nano-insulating-oil for industrial application: Electrical properties and modification mechanism. Nanomaterials 2019, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Zmarzły, D.; Dobry, D. Analysis of properties of aged mineral oil doped with C60 fullerenes. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1119–1126. [Google Scholar] [CrossRef]
- Yao, W.; Li, J.; Huang, Z.; Wu, L.; Li, N. Preparation and dielectric properties of natural ester based insulating nano-oil modified by fullerene filler. In Proceedings of the IEEE International Conference on Dielectric Liquids (ICDL), Manchester, UK, 25–29 June 2017. [Google Scholar]
- Vihacencu, M.S.; Notingher, P.V.; Paillat, T.; Jarny, S. Flow electrification phenomenon for newtonian and non-newtonian liquids: Influence of liquid conductivity, viscosity and shear stress. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 693–703. [Google Scholar] [CrossRef]
- Rajab, A.; Gumilang, H.; Tsuchie, M.; Kozako, M.; Hikita, M.; Suzuki, T. Study on static electrification of the PFAE-mineral oil mixture. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2019; Volume 602, p. 012016. [Google Scholar]
- Zdanowski, M. Streaming electrification phenomenon of electrical insulating oils for power transformers. Energies 2020, 13, 3225. [Google Scholar] [CrossRef]
C60 (mg/L) | ρ (kg/m3) | νk (m2/s) | σ (S/m) | εr (−) |
---|---|---|---|---|
0 | 871 | 2.26 × 10−5 | 6.06 × 10−13 | 2.21 |
25 | 871 | 2.27 × 10−5 | 1.21 × 10−12 | 2.19 |
50 | 871 | 2.28 × 10−5 | 1.35 × 10−12 | 2.28 |
100 | 871 | 2.29 × 10−5 | 1.04 × 10−12 | 2.22 |
200 | 871 | 2.31 × 10−5 | 1.52 × 10−12 | 2.18 |
350 | 871 | 2.32 × 10−5 | 2.18 × 10−12 | 2.27 |
C60 (mg/L) | ρ (kg/m3) | νk (m2/s) | σ (S/m) | εr (−) |
---|---|---|---|---|
0 | 870 | 2.41 × 10−5 | 1.61 × 10−11 | 2.23 |
25 | 870 | 2.42 × 10−5 | 1.39 × 10−11 | 2.27 |
50 | 870 | 2.44 × 10−5 | 1.37 × 10−11 | 2.25 |
100 | 870 | 2.45 × 10−5 | 1.35 × 10−11 | 2.29 |
200 | 870 | 2.46 × 10−5 | 1.33 × 10−11 | 2.26 |
350 | 870 | 2.47 × 10−5 | 1.32 × 10−11 | 2.21 |
C60 (mg/L) | ρ (kg/m3) | νk (m2/s) | σ (S/m) | εr (−) |
---|---|---|---|---|
0 | 918 | 8.45 × 10−5 | 8.26 × 10−12 | 3.16 |
25 | 918 | 8.49 × 10−5 | 4.08 × 10−11 | 3.20 |
50 | 918 | 8.54 × 10−5 | 2.07 × 10−11 | 3.17 |
100 | 918 | 8.59 × 10−5 | 1.91 × 10−11 | 3.19 |
200 | 918 | 8.63 × 10−5 | 1.53 × 10−11 | 3.21 |
350 | 918 | 8.68 × 10−5 | 2.34 × 10−11 | 3.18 |
C60 (mg/L) | ρ (kg/m3) | νk (m2/s) | σ (S/m) | εr (−) |
---|---|---|---|---|
0 | 968 | 7.47 × 10−5 | 8.77 × 10−12 | 3.19 |
25 | 968 | 7.51 × 10−5 | 2.52 × 10−11 | 3.17 |
50 | 968 | 7.55 × 10−5 | 2.98 × 10−11 | 3.24 |
100 | 968 | 7.59 × 10−5 | 3.02 × 10−11 | 3.22 |
200 | 968 | 7.63 × 10−5 | 2.08 × 10−11 | 3.17 |
350 | 968 | 7.67 × 10−5 | 1.92 × 10−11 | 3.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowski, M. Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications. Energies 2022, 15, 2496. https://doi.org/10.3390/en15072496
Zdanowski M. Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications. Energies. 2022; 15(7):2496. https://doi.org/10.3390/en15072496
Chicago/Turabian StyleZdanowski, Maciej. 2022. "Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications" Energies 15, no. 7: 2496. https://doi.org/10.3390/en15072496
APA StyleZdanowski, M. (2022). Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications. Energies, 15(7), 2496. https://doi.org/10.3390/en15072496