Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances †
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Structure Organization
2. Materials and Methods
2.1. Fundamental Principles of AC Power
2.2. Hardware Design for Wireless AC Power Monitoring Module
2.3. Firmware Design for Wireless AC Power Monitoring IoT System
3. Results
3.1. In Situ Monitoring Results of Electrical Parameters for Refrigerator
3.2. In Situ Monitoring Results of Electrical Parameters for Air Conditioner
3.3. Display in ThingSpeak IoT Platform
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BP p.l.c. bp Statistical Review of World Energy 2021. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 1 July 2022).
- Department of Statistics. Ministry Affair of Economics, R.O.C. A-13 Industrial Production index of Global Main Countries. Available online: https://www.moea.gov.tw/Mns/dos/content/ContentLink.aspx?menu_id=7710 (accessed on 1 July 2022).
- Bureau of Energy. Ministry Affair of Economics, R.O.C. Energy Supply and Demand Situation of Taiwan in 2020. Available online: https://www.moeaboe.gov.tw/ECW/english/content/ContentDesc.aspx?menu_id=1551 (accessed on 21 July 2022).
- Taipower. The Proportion of Power Purchase. Available online: https://www.taipower.com.tw/en/page.aspx?mid=4497&cid=2960&cchk=94e9cec8-87e9-47ae-a2bc-b24087080d4a (accessed on 1 July 2022).
- Preethi, V.; Harish, G. Design and implementation of smart energy meter. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 1 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Patrono, L.; Primiceri, P.; Rametta, P.; Sergi, I.; Visconti, P. An innovative approach for monitoring elderly behaviour by detecting home appliance’s usage. In Proceedings of the 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Spilt, Croatia, 21–23 September 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Oberloier, S.; Pearce, J.M. Open source low-cost power monitoring system. HardwareX 2018, 4, e00044. [Google Scholar] [CrossRef]
- Nayyef, I.M.; Husein, A.A. Design and implementation of IoT based on smart power monitoring and management system using WSNs. Int. J. Embed. Syst. Appl. (IJESA) 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Sookasame, C.; Wu, Z. Real time power consumption monitoring using Arduino. Int. J. Res. Sci. Innov. 2019, VI, 6–12. [Google Scholar]
- Sutisna; Usrah, I.; Hiron, N.; Andang, A. Power analyzer based Arduino uno validation using Kyoritsu KEW 6315 and Hioki 328-20. IOP Conf. Ser. Mater. Sci. Eng. 2019, 550, 012024. [Google Scholar] [CrossRef]
- Chowdary, S.S.; Abd El Ghany, M.A.; Hofmann, K. IoT based Wireless Energy Efficient Smart Metering System Using ZigBee in Smart Cities. In Proceedings of the 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Paris, France, 14–16 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ramelan, A.; Adriyanto, F.; Hermanu, B.A.C.; Ibrahim, M.H.; Saputro, J.S.; Setiawan, O. IoT Based Building Energy Monitoring and Controlling System Using LoRa Modulation and MQTT Protocol. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1096, 012069. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ahmed, M.M.; Pandey, B.; Gohel, H.; Islam, S.; Khalid, I.F. Internet of Things-based smart electricity monitoring and control system using usage data. Wirel. Commun. Mob. Comput. 2021, 2021, 6544649. [Google Scholar] [CrossRef]
- Limprapton, F.Y.; Nurcahy, E.; Ashari, M.I.; Yandri, E.; Jani, Y. Design of Power Monitoring and Electrical Control Systems to Support Energy Conservation. Proc. Pak. Acad. Sci. Pak. Acad. Sci. A Phys. Comput. Sci. 2021, 58, 1–7. [Google Scholar] [CrossRef]
- Varela-Aldás, J.; Silva, S.; Palacios-Navarro, G. IoT-Based Alternating Current Electrical Parameters Monitoring System. Energies 2022, 15, 6637. [Google Scholar] [CrossRef]
- Lin, J.Y.; Tsai, H.L.; Lyu, W.H. Development of Wireless AC Power-Monitoring Module. In Proceedings of the 8th IEEE International Conference on Applied System Innovation 2022 (IEEE ICASI 2022), Sun Moon Lake, Nantou, Taiwan, 21–23 April 2022; pp. 1–4, Paper No. 220030. [Google Scholar] [CrossRef]
- Grainger, J.J.; Stevenson, W.D.; Chang, G.W. Power System Analysis; McGraw-Hill: New York, NY, USA, 2016. [Google Scholar]
- Qingxian Zeming Langxi Electronic. ZMPT101B Current-type Voltage Transformer. Available online: http://5nrorwxhmqqijik.leadongcdn.com/attachment/kjilKBmoioSRqlkqjoipSR7ww7fgzb73m/ZMPT101B-specification.pdf (accessed on 1 August 2022).
- Allegro MicroSystem, Inc. ACS712. Available online: https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf (accessed on 1 August 2022).
- Texas Instruments. ADS1114. January 2018. Available online: https://www.ti.com/lit/ds/symlink/ads1115.pdf?ts=1665201818762&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FADS1115 (accessed on 1 August 2022).
- WEMOS, LOLIN D1 mini. Available online: https://www.wemos.cc/en/latest/d1/d1_mini.html (accessed on 1 August 2022).
- Hioki. Hioki CM3286/CM3286-01 AC Clamp Power Meter, Edition 3. November 2020. Available online: https://www.hioki.com/sg-en/download/30586 (accessed on 1 August 2022).
- Swamidass, P.M. Mean Absolute Percentage Error (MAPE). In Encyclopedia of Production and Manufacturing Management; Springer: Boston, MA, USA, 2000. [Google Scholar] [CrossRef]
- Public channel 1630040 in ThingSpeak. Available online: https://thingspeak.com/channels/1630040 (accessed on 1 August 2022).
- Public channel 1538909 in ThingSpeak. Available online: https://thingspeak.com/channels/1538909 (accessed on 1 August 2022).
Item | Electrical Parameters | Sensing Layer | Communication. Layer | Information/ App Layer | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Voltage (V) | Current (A) | Power (W) | Electricity (Wh) | pf | Freq. (Hz) | Sensors | Processor/ MCU | ||||
1 | √ | √ | √ | √ | × | × | Smart Energy Meter | ARM7 | ZigBee | PC/SMS | [5] |
2 | √ | √ | √ | × | × | × | Voltage/Current sensors | Cloud Building Bolck (CBB) | WiFi, Bluetooth, GPRS, 3G/4G | Personal Data Capturing System | [6] |
3 | √ (0–300) | √ (0–50) | × | × | × | × | 10 kΩ potentiometer CQ2334 current sensor | ATTiny 85 chip/ Arduino Uno | DUEL (I2C) | × | [7] |
4 | √ (0–250) | √ (0–20) | × | × | × | × | ZMPT101B voltage sensor ACS712 current sensor | Arduino Uno NodeMCU | WiFi | Blynk GUI/ Blynk APP | [8] |
5 | √ (0–230) | √ (0–100) | √ | √ | × | × | AC adaptor Current transformer (CT) | Arduino Uno Ethernet sshield | Ethernet | OLTP/OLAP APP | [9] |
6 | √ (0–240) | √ (0–13) | √ | √ | √ | × | Step-down transformer YHDC SCT-013 CT | Arduino Uno | 3G Lan | Intranet | [10] |
7 | √ (0–250) | √ (0–30) | √ | × | × | × | ZMPT101B voltage sensor ACS712 current sensor | Arduino Mega/ ZeeBee S2 | ZeeBee | Intranet | [11] |
8 | √ (0–250) | √ (0–20) | √ | × | × | × | ZMPT101B voltage sensor ACS712 current sensor | Arduino Uno/ LoRa Shield | RoLa | ThingSpeak IoT | [12] |
9 | √ (80–260) | √ (0–100) | √ | √ | × | × | PZEM-004t | Raspberry Pi3 | WiFi | Intranet | [13] |
10 | √ (0–240) | √ (0–20) | × | √ | × | × | Step-down transformer ACS712 current sensor | Arduino Uno/ ESP8266 WiFi | WiFi | ThingSpeak IoT | [14] |
11 | √ (80–260) | √ (0–100) | √ | √ | √ | √ | PZEM-004t V3.0 | M5Stack Core2 ESP32 | WiFi | ThingSpeak IoT Mobile APP | [15] |
12 | √ (0–250) | √ (0–5/20) | √ | √ | √ | √ | ZMPT101B voltage sensor ACS712 current sensor | ATMega 328 WeMos D1 Mini | WiFi | ThingSpeak IoT | [16] |
13 | √ (0–250) | √ (0–5/20) | √ | √ | √ | √ | ZMPT101B voltage sensor ACS712 current sensor (ADS1114 ADC) | WeMos D1 Mini | WiFi | ThingSpeak IoT | proposed |
Sensor Type | Main Technical Parameters | ||||
---|---|---|---|---|---|
Input Voltage (V) | Input Current (A) | Output Voltage (V) | Output Current (mA) | Operating Temperatur (℃) | |
ZMPT101B voltage sensor | 0–1000 | 0–0.01 | 0–1 | 0–10 | 40–60 |
ACS712-20 current sensor | 0–20 | ±20 | 0–1 | 0–50 | −25–60 |
Items | Accuracy Analysis | |||
---|---|---|---|---|
Difference Range | MAE | MAPE (%) | RMSE | |
Voltage | −2.4140–0.2434 V | 1.1295 V | 0.9283 | 1.3498 V |
Current | −0.0206–0.0093 A | 0.0030 A | 0.7453 | 0.0059 A |
Power | −5.0695–0.8641 W | 0.6987 W | 1.4586 | 1.3574 W |
Electrical energy | −0.8520–0.0942 Wh | 0.3339 Wh | 0.0807 | 0.4274 Wh |
Power factor (pf) | −0.0069–0.0071 | 0.0025 | 0.4975 | 0.0030 |
Frequency | −0.0600–0.0600 Hz | 0.0302 Hz | 0.0504 | 0.0348 Hz |
Items | Accuracy Analysis | |||
---|---|---|---|---|
Difference Range | MAE | MAPE (%) | RMSE | |
Voltage | −3.4128–0 V | 1.6792 V | 0.7908 | 1.9492 V |
Current | −0.0416–0.2047 A | 0.0368 A | 0.8817 | 0.0645 A |
Power | −41.0301–42.1660 W | 6.0745 W | 0.7037 | 10.5090 W |
Electrical energy | −3.6374–2.9868 Wh | 1.1936 Wh | 0.0216 | 1.4190 Wh |
Power factor (pf) | −0.0010–0 | 4.8620×10−4 | 0.0491 | 5.8034×10−4 |
Frequency | −0.0600–0.0600 Hz | 0.0306 Hz | 0.0510 | 0.0356 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, H.-L.; Truong, L.P.; Hsieh, W.-H. Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances. Energies 2023, 16, 163. https://doi.org/10.3390/en16010163
Tsai H-L, Truong LP, Hsieh W-H. Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances. Energies. 2023; 16(1):163. https://doi.org/10.3390/en16010163
Chicago/Turabian StyleTsai, Huan-Liang, Le Phuong Truong, and Wei-Hung Hsieh. 2023. "Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances" Energies 16, no. 1: 163. https://doi.org/10.3390/en16010163
APA StyleTsai, H. -L., Truong, L. P., & Hsieh, W. -H. (2023). Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances. Energies, 16(1), 163. https://doi.org/10.3390/en16010163