A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling
Abstract
:1. Introduction
2. Data
3. Modeling Approach
3.1. Parametric Factor Models
- Define the set = of maturities with and equal to the set’s cardinality; represents the lower bound of () and corresponds to the first available maturity of the NG futures market, while the upper bound is, at the same time, the lower bound of () and the straddling maturity between the short and medium-term period. The upper bound of () is the longest observed maturity. Values in and range between the corresponding lower/upper values by way of the proper step sizes and . Given the absence of a closed form expression for and , and given the trade-off between the step sizes discretization level and the speed of the estimation procedure, we conducted different simulations testing and in the range [0.25, 1] and [0.25, 1.5], respectively. In this way, we selected and for both the 4F-DNSS and the 5F-DRF models.
- For each maturity in the sets and , estimate the vectors and that maximize the medium-term component:, k = 1, …, ; j = 1, 2.
- For every :
- (a)
- for each component of , vary the components of to estimate by OLS regression different array sets , choosing the one with the lowest sum of squared residuals (SSR), computed as the squared magnitude of the difference between the vectors of the observed, , and estimated, , prices:.Clearly there are as many sets of optimal parameters as the number of values;
- (b)
- choose the optimal , associated with the lowest SSR.
. - Repeat step 3 for each time t to obtain the time series parameters of both and .
- Compute the average values and of the decay terms times series of step 4, then estimate again the set for each time t to obtain the final set of T estimated futures curves.
3.2. B-Spline Interpolation Method
3.3. Nonlinear Autoregressive Neural Network (NAR-NN)
4. Empirical Study
4.1. Goodness-of-Fit
4.2. Out-of-Sample Forecasting
- -
- B-spline/NAR-NN is more accurate than 4F-DNSS/NAR-NN;
- -
- B-spline/NAR-NN is more accurate than 5F-DRF/NAR-NN;
- -
- B-spline/NAR-NN is more accurate than NAR-NN;
- -
- NAR-NN is more accurate than 4F-DNSS/NAR-NN;
- -
- NAR-NN is more accurate than 5F-DRF/NAR-NN;
- -
- 4F-DNSS/NAR-NN is more accurate than 5F-DRF/NAR-NN.
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NG | Natural gas |
TTF | Title Transfer Facility |
WTI | West Texas Intermediate |
NYMEX | New York Mercantile Exchange |
4F-DNSS | Dynamic Nelson–Siegel–Svensson four-factor model |
5F-DRF | Dynamic De Rezende–Ferreira five-factor Model |
NAR-NN | Nonlinear Autoregressive Neural Network |
LMBP | Levenberg–Marquardt back propagation learning algorithm |
References
- Cheng, I.; Xiong, W. The Financialization of Commodity Markets; Working Paper 19642; National Bureau of Economic Research: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Creti, A.; Nguyen, D. Energy markets financialization, risk spillovers, and pricing models. Energy Policy 2015, 82, 260–263. [Google Scholar] [CrossRef]
- Futures Industry Association (FIA). 2021 Annual ETD Volume Review; FIA: Washington, DC, USA, 2021. [Google Scholar]
- Furtuna, O.; Grassi, A.; Ianiro, A.; Kallage, K.; Koci, R.; Lenoci, F.D.; Sowinski, A.; Vacirca, F. Financial Stability Risks from Energy Derivatives Markets; Techreport; European Central Bank: Frankfurt am Main, Germany, 2022. [Google Scholar]
- Pascual, C.; Zambetakis, E. The Geopolitics of Energy: From Security to Survival; Technical Report 07; Brookins Institution: Washington, DC, USA, 2016. [Google Scholar]
- Bordoff, J.; O’Sullivan, M. The Age of Energy Insecurity. How the Fight for Resources Is Upending Geopolitics. Foreign Affairs 2023, 102, 104–119. [Google Scholar]
- Bartuska, V.; Lang, P.; Nosko, A. The Geopolitics of Energy Security in Europe; Carnegie Reports; Carnegie Europe: Brussels, Belgium, 2019. [Google Scholar]
- Snam. Global Gas Report 2020; Snam: Milano, Italy, 2020. [Google Scholar]
- Chen, B.; Xiong, R.; Li, H.; Sun, Q.; Yang, J. Pathways for sustainable energy transition. J. Clean. Prod. 2019, 228, 1564–1571. [Google Scholar] [CrossRef]
- Guidolin, M.; Alpcan, T. Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables. Renew. Energy 2019, 139, 359–367. [Google Scholar] [CrossRef]
- Schoenberg, I. Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions: Part A—On the Problem of Smoothing or Graduation. A First Class of Analytic Approximation Formulae. Q. Appl. Math. 1946, 4, 45–99. [Google Scholar] [CrossRef] [Green Version]
- Svensson, L. Estimating and Interpreting forward Interest Rates: Sweden 1992–1994; NBER Working Papers 4871; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1994. [Google Scholar] [CrossRef]
- De Rezende, R.; Ferreira, M. Modeling and Forecasting the Brazilian Term Structure of Interest Rates by an Extended Nelson-Siegel Class of Models: A Quantile Autoregression Approach; Resreport; Escola Brasileira de Economia e Finanças: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Lin, B. Fitting term structure of interest rates using B-splines: The case of Taiwanese Government bonds. Appl. Financ. Econ. 2002, 12, 57–75. [Google Scholar] [CrossRef]
- Koopman, S.; Mallee, M.; Van der Wel, M. Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson-Siegel Model with Time-Varying Parameters; Tinbergen Institute Discussion Papers 07-095/4; Tinbergen Institute: Amsterdam, The Netherlands, 2007. [Google Scholar]
- De Pooter, M. Examining the Nelson-Siegel Class of Term Structure Models—In-Sample Fit versus Out-of-Sample Forecasting Performance; Resreport TI 2007-043/4; Tinbergen Institute: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Caldeira, J.; Moura, G.; Portugal, M. Efficient Yield Curve Estimation and Forecasting in Brazil. Rev. Econ. 2010, 11, 27–51. [Google Scholar]
- De Rezende, R.; Ferreira, M. Modeling and Forecasting the Yield Curve by an Extended Nelson-Siegel Class of Models: A Quantile Autoregression Approach. J. Forecast. 2013, 32, 111–123. [Google Scholar] [CrossRef]
- Muthoni, L.; Onyango, S.; Ongati, O. Extraction of Zero-Coupon Yield Curve for Nairobi Securities Exchange: Finding the Best Parametric Model for East African Securities Markets. J. Math. Stat. Sci. 2015, 2015, 51–74. [Google Scholar]
- Chouikh, A.; Yousfi, R.; Chehibi, C. Yield Curve Estimation: An Empirical Evidence from the Tunisian Bond Market. J. Financ. Econ. 2017, 5, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Ullah, W.; Bari, K. The Term Structure of Government Bond Yields in an Emerging Market. Rom. J. Econ. Forecast. 2018, 21, 5–28. [Google Scholar]
- Faria, A.; Almeida, C. A hybrid spline-based parametric model for the yield curve. J. Econ. Dyn. Control 2018, 86, 72–94. [Google Scholar] [CrossRef]
- Nunes, M.; Gerding, E.; McGroarty, F.; Niranjan, M. A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting. Expert Syst. Appl. 2019, 119, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Nagy, K. Term structure estimation with missing data: Application for emerging markets. Q. Rev. Econ. Financ. 2020, 75, 347–360. [Google Scholar] [CrossRef]
- Mineo, E.; Alencar, A.; Moura, M.; Fabris, A. Forecasting the Term Structure of Interest Rates with Dynamic Constrained Smoothing B-Splines. J. Risk Financ. Manag. 2020, 13, 65. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Xue, H. Crop Yield Forecasting Using Artificial Neural Networks: A Comparison between Spatial and Temporal Models. Math. Probl. Eng. 2014, 2014, 857865. [Google Scholar] [CrossRef]
- Baruník, J.; Malinská, B. Forecasting the term structure of crude oil futures prices with neural networks. Appl. Energy 2016, 164, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.; Cuéllar, M.; Calvo-Flores, M.; Jiménez, M. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings. Energies 2016, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhao, P.; Wu, D.; Cheng, C.; Huang, H. Time series model for forecasting the number of new admission inpatients. BMC Med. Inform. Decis. Mak. 2018, 18, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliberti, A.; Pupillo, I.; Terna, S.; Macii, E.; Di Cataldo, S.; Patti, E.; Acquaviva, A. A Multi-Patient Data-Driven Approach to Blood Glucose Prediction. IEEE Access 2019, 7, 69311–69325. [Google Scholar] [CrossRef]
- Benrhmach, G.; Namir, K.; Namir, A.; Bouyaghroumni, J. Nonlinear Autoregressive Neural Network and Extended Kalman Filters for Prediction of Financial Time Series. J. Appl. Math. 2020, 2020, 5057801. [Google Scholar] [CrossRef]
- Di Franco, G.; Santurro, M. Machine learning, artificial neural networks and social research. Qual. Quant. 2020, 55, 1007–1025. [Google Scholar] [CrossRef]
- Butler, S.; Kokoszka, P.; Miao, H.; Shang, H. Neural network prediction of crude oil futures using B-splines. Energy Econ. 2021, 94, 105080. [Google Scholar] [CrossRef]
- Chi, Y. Time Series Forecasting of Global Price of Soybeans using a Hybrid SARIMA and NARNN Model: Time Series Forecasting of Global Price of Soybeans. Data Sci. J. Comput. Appl. Inform. 2021, 5, 85–101. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y. Corn cash price forecasting with neural networks. Comput. Electron. Agric. 2021, 184, 106120. [Google Scholar] [CrossRef]
- Blanchard, T.; Samanta, B. Wind speed forecasting using neural networks. Wind Eng. 2020, 44, 33–48. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y. Soybean and Soybean Oil Price Forecasting through the Nonlinear Autoregressive Neural Network (NARNN) and NARNN with Exogenous Inputs (NARNN–X). Intell. Syst. Appl. 2022, 13, 200061. [Google Scholar] [CrossRef]
- Emery, G.; Liu, Q. An analysis of the relationship between electricity and natural-gas futures prices. J. Futures Mark. 2002, 22, 95–122. [Google Scholar] [CrossRef]
- Brown, S.; Yücel, M. What Drives Natural Gas Prices? Energy J. 2008, 29, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Brigida, M. The switching relationship between natural gas and crude oil prices. Energy Econ. 2014, 43, 48–55. [Google Scholar] [CrossRef]
- Etienne, X.; Trujillo-Barrera, A.; Wiggins, S. Price and volatility transmissions between natural gas, fertilizer, and corn markets. Agric. Financ. Rev. 2016, 76, 151–171. [Google Scholar] [CrossRef]
- Gatfaoui, H. Linking the gas and oil markets with the stock market: Investigating the U.S. relationship. Energy Econ. 2016, 53, 5–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Chevallier, J.; Guesmi, K. “De-financialization” of commodities? Evidence from stock, crude oil and natural gas markets. Energy Econ. 2017, 68, 228–239. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Wang, D.; Zhang, H. Analysis of the Price Correlation between the International Natural Gas and Coal. Energy Procedia 2017, 142, 3141–3146. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, H.; Geng, J. What drives natural gas prices in the United States?—A directed acyclic graph approach. Energy Econ. 2018, 69, 79–88. [Google Scholar] [CrossRef]
- Behmiri, N.; Manera, M.; Nicolini, M. Understanding Dynamic Conditional Correlations between Oil, Natural Gas and Non-Energy Commodity Futures Markets. Energy J. 2019, 40, 55–76. [Google Scholar] [CrossRef]
- Tiwari, A.; Mukherjee, Z.; Gupta, R.; Balcilar, M. A wavelet analysis of the relationship between oil and natural gas prices. Resour. Policy 2019, 60, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Suenaga, H.; Smith, A.; Williams, J. Volatility dynamics of NYMEX natural gas futures prices. J. Futures Mark. 2008, 28, 438–463. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Shan, X. Modeling natural gas market volatility using GARCH with different distributions. Phys. A Stat. Mech. Appl. 2013, 392, 5685–5699. [Google Scholar] [CrossRef]
- van Goor, H.; Scholtens, B. Modeling natural gas price volatility: The case of the UK gas market. Energy 2014, 72, 126–134. [Google Scholar] [CrossRef]
- Saltik, O.; Degirmen, S.; Ural, M. Volatility Modelling in Crude Oil and Natural Gas Prices. Procedia Econ. Fin. 2016, 38, 476–491. [Google Scholar] [CrossRef] [Green Version]
- Fałdziński, M.; Fiszeder, P.; Orzeszko, W. Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression. Energies 2021, 14, 6. [Google Scholar] [CrossRef]
- Lu, F.; Ma, F.; Li, P.; Huang, D. Natural gas volatility predictability in a data-rich world. Int. Rev. Financ. Anal. 2022, 83, 102218. [Google Scholar] [CrossRef]
- Liang, C.; Xia, Z.; Lai, X.; Wang, L. Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model. Energy Econ. 2022, 116, 106437. [Google Scholar] [CrossRef]
- Guo, K.; Liu, F.; Sun, X.; Zhang, D.; Ji, Q. Predicting natural gas futures’ volatility using climate risks. Fin. Res. Let. 2023, 55, 103915. [Google Scholar] [CrossRef]
- Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. [Google Scholar] [CrossRef]
- Khan, M.A. Modelling and forecasting the demand for natural gas in Pakistan. Renew. Sustain. Energy Rev. 2015, 49, 1145–1159. [Google Scholar] [CrossRef]
- Shaikh, F.; Ji, Q. Forecasting natural gas demand in China: Logistic modelling analysis. Int. J. Electr. Power Energy Syst. 2016, 77, 25–32. [Google Scholar] [CrossRef]
- Panapakidis, I.; Dagoumas, A. Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 2017, 118, 231–245. [Google Scholar] [CrossRef]
- Shaikh, F.; Ji, Q.; Shaikh, P.H.; Mirjat, N.H.; Uqaili, M.A. Forecasting China’s natural gas demand based on optimised nonlinear grey models. Energy 2017, 140, 941–951. [Google Scholar] [CrossRef]
- Chen, Y.; Chua, W.; Koch, T. Forecasting day-ahead high-resolution natural-gas demand and supply in Germany. Appl. Energy 2018, 228, 1091–1110. [Google Scholar] [CrossRef]
- Özmen, A.; Yılmaz, Y.; Weber, G. Natural gas consumption forecast with MARS and CMARS models for residential users. Energy Econ. 2018, 70, 357–381. [Google Scholar] [CrossRef]
- Hribar, R.; Potočnik, P.; Šilc, J.; Papa, G. A comparison of models for forecasting the residential natural gas demand of an urban area. Energy 2019, 167, 511–522. [Google Scholar] [CrossRef]
- Su, H.; Zio, E.; Zhang, J.; Xu, M.; Li, X.; Zhang, Z. A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model. Energy 2019, 178, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Mu, X. Weather, storage, and natural gas price dynamics: Fundamentals and volatility. Energy Econ. 2007, 29, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Panella, M.; Barcellona, F.; D’Ecclesia, R. Forecasting Energy Commodity Prices Using Neural Networks. Adv. Decis. Sci. 2012, 2012, 289810. [Google Scholar] [CrossRef] [Green Version]
- Salehnia, N.; Falahi, M.; Seifi, A.; Mahdavi Adeli, M. Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis. J. Nat. Gas Sci. Eng. 2013, 14, 238–249. [Google Scholar] [CrossRef]
- Mason, C.; Wilmot, N.A. Jump processes in natural gas markets. Energy Econ. 2014, 46, S69–S79. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Kim, J. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks. PLoS ONE 2015, 10, e0142064. [Google Scholar] [CrossRef]
- Čeperić, E.; Žiković, S.; Čeperić, V. Short-term forecasting of natural gas prices using machine learning and feature selection algorithms. Energy 2017, 140, 893–900. [Google Scholar] [CrossRef]
- Dolatabadi, S.; Narayan, P.; Nielsen, M.; Xu, K. Economic significance of commodity return forecasts from the fractionally cointegrated VAR model. J. Futures Mark. 2018, 38, 219–242. [Google Scholar] [CrossRef]
- Berrisch, J.; Ziel, F. Distributional modeling and forecasting of natural gas prices. J. Forecast. 2022, 41, 1065–1086. [Google Scholar] [CrossRef]
- Kwas, M.; Rubaszek, M. Forecasting Commodity Prices: Looking for a Benchmark. Forecasting 2021, 3, 447–459. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Tian, Y.; Fan, L. Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network. Energy 2021, 227, 120478. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Yuan, S.; Cheng, M. Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network. Energy 2021, 233, 121082. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, C.; Shen, Y.; Wang, M. A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network. Energies 2023, 16, 2321. [Google Scholar] [CrossRef]
- Borovkova, S.; Mahakena, D. News, volatility and jumps: The case of natural gas futures. Quant. Financ. 2015, 15, 1217–1242. [Google Scholar] [CrossRef]
- Jana, R.; Ghosh, I. A residual driven ensemble machine learning approach for forecasting natural gas prices: Analyses for pre-and during-COVID-19 phases. Ann. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Li, R.; Song, X. A multi-scale model with feature recognition for the use of energy futures price forecasting. Expert Syst. Appl. 2023, 211, 118622. [Google Scholar] [CrossRef]
- Chiarella, C.; Clewlow, L.; Kang, B. Modelling and Estimating the Forward Price Curve in the Energy Market; Technical Report 260; University of Technology Sydney: Sydney, Australia, 2009. [Google Scholar]
- Almansour, A. Convenience yield in commodity price modeling: A regime switching approach. Energy Econ. 2016, 53, 238–247. [Google Scholar] [CrossRef]
- Gibson, R.; Schwartz, E. Stochastic Convenience Yield and the Pricing of Oil Contingent Claims. J. Financ. 1990, 45, 959–976. [Google Scholar] [CrossRef]
- Leonhardt, D.; Ware, A.; Zagst, R. A Cointegrated Regime-Switching Model Approach with Jumps Applied to Natural Gas Futures Prices. Risks 2017, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Karstanje, D.; van der Wel, M.; van Dijk, D. Common Factors in Commodity Futures Curves. January 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2558014 (accessed on 14 May 2023).
- Diebold, F.; Li, C. Forecasting the term structure of government bond yields. J. Econom. 2006, 130, 337–364. [Google Scholar] [CrossRef] [Green Version]
- Jablonowski, C.; Schicks, M. A Three-Factor Model on the Natural Gas Forward Curve Including Temperature Forecasts. J. Energy Mark. 2017, 10, 87–105. [Google Scholar] [CrossRef]
- Heath, D.; Jarrow, R.; Morton, A. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica 1992, 60, 77–105. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Wang, Q.; Xu, W.; Wang, M.; Wang, Z. Natural Gas Price Prediction with Big Data. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5326–5330. [Google Scholar] [CrossRef]
- Li, B. Pricing dynamics of natural gas futures. Energy Econ. 2019, 78, 91–108. [Google Scholar] [CrossRef]
- Horváth, L.; Liu, Z.; Rice, G.; Wang, S. A functional time series analysis of forward curves derived from commodity futures. Int. J. Forecast. 2020, 36, 646–665. [Google Scholar] [CrossRef]
- Heather, P. European Traded Gas Hubs: German Hubs about to Merge; Techreport; The Oxford Institute for Energy Studies: Oxford, UK, 2021. [Google Scholar]
- Intercontinental Exchange. ICE Announces Record Activity in TTF and JKM Gas Complexes as They Evolve into Global Benchmarks; Techreport; Intercontinental Exchange (ICE): Atlanta, GA, USA, 2021. [Google Scholar]
- Copernicus Climate Change Service (C3S). Summer 2022 Europe’s Hottest on Record; Copernicus Climate Change Service (C3S): Brussels, Belgium, 2022. [Google Scholar]
- Gas Infrastructure Europe (GIE). Gas Storage Inventory; Gas Infrastructure Europe (GIE): Brussels, Belgium, 2022. [Google Scholar]
- Bessembinder, H.; Coughenour, J.; Seguin, P.; Smoller, M. Is There a Term Structure of Futures Volatilities? Reevaluating the Samuelson Hypothesis. J. Deriv. 1996, 4, 45–58. [Google Scholar] [CrossRef]
- Samuelson, P.A. Proof That Properly Discounted Present Values of Assets Vibrate Randomly. Bell J. Econ. Manag. Sci. 1973, 4, 369–374. [Google Scholar] [CrossRef]
- Duong, H.; Kalev, P. The Samuelson hypothesis in futures markets: An analysis using intraday data. J. Bank. Financ. 2008, 32, 489–500. [Google Scholar] [CrossRef]
- Jaeck, E.; Lautier, D. Samuelson hypothesis and electricity derivative markets. In Proceedings of the 31st International French Finance Association Conference, AFFI 2014, Aix-en-Provence, France, 20–21 May 2014; p. 24. [Google Scholar]
- Jonckheere, A. A Distribution-Free k-Sample Test Against Ordered Alternatives. Biometrika 1954, 41, 133–145. [Google Scholar] [CrossRef]
- Terpstra, T. The asymptotic normality and consistency of kendall’s test against trend, when ties are present in one ranking. Indag. Math. 1952, 55, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Nelson, C.; Siegel, A. Parsimonious Modeling of Yield Curves. J. Bus. 1987, 60, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Castello, O.; Resta, M. Modeling the Yield Curve of BRICS Countries: Parametric vs. Machine Learning Techniques. Risks 2022, 10, 36. [Google Scholar] [CrossRef]
- Curry, H.; Schoenberg, I. On spline distributions and their limits: The Polya Distribution Functions. Bull. Am. Math. Soc. 1947, 4, 109. [Google Scholar]
- Curry, H.; Schoenberg, I. On Pólya frequency functions IV: The fundamental spline functions and their limits. J. D’Anal. Math. 1966, 17, 71–107. [Google Scholar] [CrossRef]
- Reed, R.; Marks, R. Neural Smithing: Supervise Learning in Feedforward Artificial Neural Networks; The MIT Press: Cambridge, CA, USA, 1999. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [Green Version]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Theil, H. Economic Forecasts and Policy; Technical Report; Netherland School of Economics: Rotterdam, The Netherlands, 1958. [Google Scholar]
- Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification. J. Mark. Res. 1973, 10, 444–446. [Google Scholar] [CrossRef]
- Granger, C.; Newbold, P. Some comments on the evaluation of economic forecasts. Appl. Econ. 1973, 5, 35–47. [Google Scholar] [CrossRef]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Hansen, P.; Lunde, A.; Nason, J. The model confidence set. Econometrica 2011, 79, 453–497. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.; Lunde, A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? J. Appl. Econom. 2005, 20, 873–889. [Google Scholar] [CrossRef] [Green Version]
Price | σdaily | |||||
---|---|---|---|---|---|---|
Maturity | Mean | SD | Min | Max | Mean | Median |
Mc1 | 24.951 | 20.928 | 3.509 | 227.201 | 2.031 | 1.167 |
Mc2 | 25.244 | 20.764 | 4.058 | 217.293 | 1.870 | 1.088 |
Mc3 | 25.369 | 20.170 | 4.618 | 210.804 | 1.743 | 1.000 |
Mc4 | 25.288 | 19.095 | 5.406 | 206.905 | 1.688 | 0.942 |
Mc5 | 25.170 | 18.327 | 7.082 | 200.902 | 1.611 | 0.923 |
Mc6 | 24.923 | 17.376 | 7.921 | 199.052 | 1.557 | 0.913 |
Mc7 | 24.690 | 16.645 | 9.194 | 179.233 | 1.507 | 0.906 |
Mc8 | 24.605 | 16.410 | 10.692 | 171.752 | 1.449 | 0.894 |
Mc9 | 24.527 | 16.078 | 11.130 | 154.291 | 1.405 | 0.848 |
Mc10 | 24.394 | 15.544 | 10.828 | 149.990 | 1.368 | 0.806 |
Mc11 | 24.190 | 14.733 | 10.801 | 143.515 | 1.329 | 0.797 |
Mc12 | 23.979 | 13.750 | 10.739 | 130.742 | 1.299 | 0.771 |
σdaily | |||
---|---|---|---|
Maturity | JB Test | LB Test | ADF Test |
Mc1 | * | * | * |
Mc2 | * | * | * |
Mc3 | * | * | * |
Mc4 | * | * | * |
Mc5 | * | * | * |
Mc6 | * | * | * |
Mc7 | * | * | * |
Mc8 | * | * | * |
Mc9 | * | * | * |
Mc10 | * | * | * |
Mc11 | * | * | * |
Mc12 | * | * | * |
4F-DNSS | 5F-DRF | B-Spline | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maturity | Mean | SD | MSE | RMSE | Mean | SD | MSE | RMSE | Mean | SD | MSE | RMSE |
Mc1 | 24.944 | 21.003 | 0.416 | 0.645 | 24.930 | 20.848 | 24.950 | 20.923 | ||||
Mc2 | 25.278 | 20.780 | 1.579 | 1.256 | 25.304 | 21.033 | 25.252 | 20.813 | ||||
Mc3 | 25.341 | 19.975 | 1.156 | 1.075 | 25.352 | 20.060 | 25.349 | 20.066 | ||||
Mc4 | 25.267 | 19.032 | 1.893 | 1.376 | 25.257 | 18.950 | 1.4681 | 1.2117 | 25.310 | 19.169 | ||
Mc5 | 25.128 | 18.199 | 3.446 | 1.856 | 25.107 | 18.035 | 1.5893 | 1.2607 | 25.162 | 18.282 | ||
Mc6 | 24.963 | 17.506 | 2.151 | 1.467 | 24.946 | 17.354 | 1.6048 | 1.2668 | 24.918 | 17.331 | ||
Mc7 | 24.791 | 16.893 | 1.166 | 1.080 | 24.787 | 16.858 | 1.2568 | 1.1211 | 24.697 | 16.703 | ||
Mc8 | 24.623 | 16.302 | 0.865 | 0.930 | 24.634 | 16.450 | 24.603 | 16.385 | ||||
Mc9 | 24.464 | 15.712 | 0.956 | 0.978 | 24.484 | 16.011 | 24.523 | 16.066 | ||||
Mc10 | 24.314 | 15.139 | 0.906 | 0.952 | 24.334 | 15.435 | 24.400 | 15.564 | ||||
Mc11 | 24.174 | 14.621 | 0.542 | 0.736 | 24.179 | 14.686 | 24.188 | 14.726 | ||||
Mc12 | 24.044 | 14.210 | 1.227 | 1.107 | 24.018 | 13.834 | 23.979 | 13.750 |
MSE | RMSE | |||||
---|---|---|---|---|---|---|
4F-DNSS | 5F-DRF | B-Spline | 4F-DNSS | 5F-DRF | B-Spline | |
Mean | 1.3586 | |||||
SD | 6.5667 | 4.5393 | 1.0091 | |||
Min | ||||||
Max | 98.9464 | 83.6844 | 17.4452 | 9.9472 | 9.14792 | 4.17675 |
Forecasting Model | MAPE | MSFE | Theil’s Score |
---|---|---|---|
4F-DNSS/NAR-NN | 6.1309 | 43.4550 | 0.0644 |
5F-DRF/NAR-NN | 7.6939 | 85.4639 | 0.0670 |
B-spline/NAR-NN | 2.7562 | 9.2254 | 0.0268 |
NAR-NN | 2.7619 | 9.4914 | 0.0280 |
Model 1 | Model 2 | ADM Statistics | p-Value |
---|---|---|---|
4F-DNSS/NAR-NN | B-spline/NAR-NN | 4.2532 | 0.9998 * |
5F-DRF/NAR-NN | B-spline/NAR-NN | 3.3970 | 0.9986 * |
NAR-NN | B-spline/NAR-NN | 1.9269 | 0.9658 * |
5F-DRF/NAR-NN | 4F-DNSS/NAR-NN | 0.4477 * | |
5F-DRF/NAR-NN | NAR-NN | 3.1252 | 0.9973 * |
4F-DNSS/NAR-NN | NAR-NN | 4.1745 | 0.9998 * |
SSM | Rank | Loss |
---|---|---|
B-spline/NAR-NN | 1 | 5.6868 |
NAR-NN | 2 | 6.2330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castello, O.; Resta, M. A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling. Energies 2023, 16, 4746. https://doi.org/10.3390/en16124746
Castello O, Resta M. A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling. Energies. 2023; 16(12):4746. https://doi.org/10.3390/en16124746
Chicago/Turabian StyleCastello, Oleksandr, and Marina Resta. 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling" Energies 16, no. 12: 4746. https://doi.org/10.3390/en16124746
APA StyleCastello, O., & Resta, M. (2023). A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling. Energies, 16(12), 4746. https://doi.org/10.3390/en16124746