Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Future Climate Projections
2.2. Future Changes in Large-Scale Atmospheric Circulation over the North Atlantic
2.3. Future Changes in Wind Energy Potential over Portugal and Its Coastal Waters
3. Results and Discussion
3.1. Future Changes in the Large-Scale Atmospheric Circulation over the North Atlantic Ocean
3.2. Future Changes in the Wind Energy Resource over Portugal and the Neighbouring Atlantic Ocean
3.2.1. Seasonal Changes in the 100 m Wind Power Density: Intra-Annual Variability
3.2.2. Changes in the 100 m Wind Power Density Inter-Annual Variability
4. Conclusions
- Increase over the North Atlantic Ocean near the northwest coast of Portugal, around Cape Espichel and Cape St. Vincent, as well as in several mountain regions, due to the increase of the 75th percentile;
- Decrease in the northern mountain regions, due to the decrease of the 75th percentile;
- Decrease in the southern inland area and over the ocean, off the central coast, and near Cape Raso. This is due to the increase of the 25th percentile;
- Decrease along the southern coast, caused by a decrease of the 75th percentile.
- Increase in almost the entire studied area, mainly due to a decrease of the 25th percentile;
- Decrease in northern mountainous regions and around Cape Raso, mainly due to an increase of the 25th percentile.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Renewable Energy Targets. 2022. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en (accessed on 2 November 2022).
- APA. Plano Nacional de Energia e Clima (PNEC). Agência Portuguesa Do Ambiente (APA). 2020. Available online: https://apambiente.pt/clima/plano-nacional-de-energia-e-clima-pnec (accessed on 2 November 2022).
- APREN. APREN—Production. 2022. Available online: https://www.apren.pt/en/renewable-energies/production/ (accessed on 2 November 2022).
- Eurostat. Statistics | Eurostat. European Commission. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/t2020_rd330/default/bar?lang=en (accessed on 2 November 2022).
- APREN. APREN—Power. 2022. Available online: https://www.apren.pt/en/renewable-energies/power/ (accessed on 2 November 2022).
- BP. Statistical Review of World Energy 2022, 71st ed.; BP: London, UK, 2022. [Google Scholar]
- Guezuraga, B.; Zauner, R.; Pölz, W. Life cycle assessment of two different 2 MW class wind turbines. Renew. Energy 2012, 37, 37–44. [Google Scholar] [CrossRef]
- Kaldellis, J.; Apostolou, D.; Kapsali, M.; Kondili, E. Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2016, 92, 543–556. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M. Ocean Surface Wind Simulation Forced by Different Reanalyses: Comparison with Observed Data along the Iberian Peninsula Coast. Ocean Model. 2012, 56, 31–42. [Google Scholar] [CrossRef]
- De Simón-Martín, M.; de La Puente-Gil, Á.; Borge-Diez, D.; Ciria-Garcés, T.; González-Martínez, A. Wind energy planning for a sustainable transition to a decarbonized generation scenario based on the opportunity cost of the wind energy: Spanish Iberian Peninsula as case study. Energy Procedia 2019, 157, 1144–1163. [Google Scholar] [CrossRef]
- Pryor, S.; Barthelmie, R. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Rochinha, C.; Liberato, M.; Reyers, M.; Pinto, J. Projected changes in wind energy potentials over Iberia. Renew. Energy 2014, 75, 68–80. [Google Scholar] [CrossRef]
- Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Añel, J.A.; Carvalho, D.; Costoya, X.; Dias, J.M. On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean. Appl. Energy 2018, 228, 289–300. [Google Scholar] [CrossRef]
- Martins, J.; Rocha, A.; Viceto, C.; Pereira, S.C.; Santos, J.A. Future Projections for Wind, Wind Shear and Helicity in the Iberian Peninsula. Atmosphere 2020, 11, 1001. [Google Scholar] [CrossRef]
- Costoya, X.; Rocha, A.; Carvalho, D. Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula. Appl. Energy 2020, 262, 114562. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Costoya, X.; deCastro, M.; Gómez-Gesteira, M. Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renew. Sustain. Energy Rev. 2021, 151, 111594. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Reisinger, A.; Slade, R.; Fradera, R.; Pathak, M.; Al, A.; Malek, K.; Renée van Diemen, B.; Hasija, A.; et al. Climate Change 2022: Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers; IPCC: Geneva, Switzerland, 2022.
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 Simulations With the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergman, T.; Bernardello, R.; Boussetta, S.; Caron, L.P.; Carver, G.; et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.S.; Brüggemann, N.; Haak, H.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef] [Green Version]
- Räisänen, J.; Palmer, T. A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J. Clim. 2001, 14, 3212–3226. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Silva Santos, C. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 2017, 101, 29–40. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4.3; National Center for Atmospheric Research: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Vijaymeena, M.; Kavitha, K. A survey on similarity measures in text mining. Mach. Learn. Appl. Int. J. 2016, 3, 19–28. [Google Scholar]
- EDP. Windfloat Atlantic Project. 2022. Available online: https://www.edp.com/en/innovation/windfloat (accessed on 2 November 2022).
- Cresswell-Clay, N.; Ummenhofer, C.C.; Thatcher, D.L.; Wanamaker, A.D.; Denniston, R.F.; Asmerom, Y.; Polyak, V.J. Twentieth-century Azores High expansion unprecedented in the past 1,200 years. Nat. Geosci. 2022, 15, 548–553. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Miranda, P.M.A. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef] [PubMed]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Fischer, E.M. Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Sci. Total Environ. 2018, 631, 534–549. [Google Scholar] [CrossRef] [PubMed]
GCM | Institution | Horizontal Resolution | Vertical Levels | IPCC Scenario | Time Periods | References |
---|---|---|---|---|---|---|
CMCC-CM2-SR5 | Euro-Mediterranean Centre on Climate Change (CMCC), Italy | 1.25° lat × 0.938° lon | Surface (10 m) 850 hPa 700 hPa 500 hPa 250 hPa | SSP5-8.5 | 1995–2014 2046–2065 2081–2100 | [19] |
CMCC-ESM2 | [20] | |||||
EC-Earth3 | EC-Earth-Consortium (12 European countries) | 0.703° lat × 0.703° lon | [21] | |||
EC-Earth3-Veg | ||||||
MPI-ESM1.2-HR | Max Planck Institute for Meteorology (MPI-M), Germany | 0.938° lat × 0.938° lon | [22] | |||
MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan | 1.125° lat × 1.125° lon | [23] |
GCM | Institution | Horizontal Resolution | Vertical Levels | IPCC Scenario | Time Periods | Reference |
---|---|---|---|---|---|---|
WRF | National Center for Atmospheric Research, USA | 6 km | 33 | SSP5-8.5 | 1995–2014 2046–2065 2081–2100 | [27] |
Pressure Centre Anomalies | Jet stream | WPD Seasonal Median | Extreme WPD Events | |
---|---|---|---|---|
2046—2065 | Icelandic Low expansion to SE during DJF; Azores High expansion to NE during MAM, JJA and SON. | DJF: southward displacement and intensification; MAM, JJA and SON: northward displacement. | 25% to 50% increase during JJA, offshore of the NW coast | DJF, MAM and JJA: more intense events; SON: less intense events. |
2081—2100 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claro, A.; Santos, J.A.; Carvalho, D. Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations. Energies 2023, 16, 661. https://doi.org/10.3390/en16020661
Claro A, Santos JA, Carvalho D. Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations. Energies. 2023; 16(2):661. https://doi.org/10.3390/en16020661
Chicago/Turabian StyleClaro, André, João A. Santos, and David Carvalho. 2023. "Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations" Energies 16, no. 2: 661. https://doi.org/10.3390/en16020661
APA StyleClaro, A., Santos, J. A., & Carvalho, D. (2023). Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations. Energies, 16(2), 661. https://doi.org/10.3390/en16020661