Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Characteristics
2.2. Bio-Oil as a Diesel Substitute
2.2.1. Pre-Treatment
2.2.2. Fast Pyrolysis
2.2.3. Bio-Oil Storage
2.2.4. Diesel Generators Powered by Bio-Oil
2.2.5. Grid Connection
2.3. Direct Combustion
2.3.1. Capital Costs
2.3.2. Operational Costs
2.4. Calorific Content Sensitivity Analysis
2.5. Land Area Requirement
3. Results
3.1. Biomass Characteristics
3.2. Bio-Oil as a Diesel Substitute
3.3. Direct Combustion
3.4. Land Area Requirement
3.5. Calorific Content Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zomers, A. Remote Access: Context, Challenges, and Obstacles in Rural Electrification. IEEE Power Energy Mag. 2014, 12, 26–34. [Google Scholar] [CrossRef]
- Mainali, B.; Silveira, S. Alternative Pathways for Providing Access to Electricity in Developing Countries. Renew. Energy 2013, 57, 299–310. [Google Scholar] [CrossRef]
- Khodayar, M.E. Rural Electrification and Expansion Planning of Off-Grid Microgrids. Electr. J. 2017, 30, 68–74. [Google Scholar] [CrossRef]
- Longden, T. The Impact of Temperature on Mortality across Different Climate Zones. Clim. Chang. 2019, 157, 221–242. [Google Scholar] [CrossRef]
- Power and Water Corporation, Northern Territory. SETuP Knowledge—Daly River Lessons Learned; NT, Australia 2019. Available online: https://www.powerwater.com.au/__data/assets/pdf_file/0018/32328/SETuP-Knowledge-Sharing-Daly-River-Nauiyu-Lessons-Learned-and-Performance-Report-September-2019-FINAL.pdf (accessed on 7 December 2021).
- Sangha, K.K.; He, J.; Edwards, A.C.; Russell-Smith, J. Measuring Environmental Losses from Natural Disasters: A Case Study of Costing Bushfires in the Northern Territory. Aust. J. Emerg. Manag. 2019, 34, 32–40. [Google Scholar]
- Power and Water Corporation. Indigenous Essential Services Annual Report 2016–2017; Centre for Appropriate Technology: Darwin, Australia, 2017.
- Centre for Appropriate Technology. The Northern Territory Homelands and Outstations Asses and Access Review; Centre for Appropriate Technology: Alice Springs, Australia, 2016. [Google Scholar]
- Australian Bureau of Statistics. Housing and Infrastructure in Aboriginal and Torres Strait Islander Communities; Australian Bureau of Statistics: Belconnen, ACT, Australia, 2017.
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Longden, T.; Quilty, S.; Riley, B.; White, L.V.; Klerck, M.; Davis, V.N.; Frank Jupurrurla, N. Energy Insecurity during Temperature Extremes in Remote Australia. Nat. Energy 2022, 7, 43–54. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Toft, A.J.; Brammer, J.G. A Techno-Economic Comparison of Power Production by Biomass Fast Pyrolysis with Gasification and Combustion. Renew. Sustain. Energy Rev. 2002, 6, 181–246. [Google Scholar] [CrossRef]
- Hossain, A.K.; Davies, P.A. Pyrolysis Liquids and Gases as Alternative Fuels in Internal Combustion Engines—A Review. Renew. Sustain. Energy Rev. 2013, 21, 165–189. [Google Scholar] [CrossRef]
- Ringer, M.; Putsche, V.; Scahill, J. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2006; Report number NREL/TP-510-37779. [Google Scholar]
- Oasmaa, A.; van de Beld, B.; Saari, P.; Elliott, D.C.; Solantausta, Y. Norms, Standards, and Legislation for Fast Pyrolysis Bio-Oils from Lignocellulosic Biomass. Energy Fuels 2015, 29, 2471–2484. [Google Scholar] [CrossRef]
- Brown, D.; Rowe, A.; Wild, P. A Techno-Economic Analysis of Using Mobile Distributed Pyrolysis Facilities to Deliver a Forest Residue Resource. Bioresour. Technol. 2013, 150, 367–376. [Google Scholar] [CrossRef]
- Zafar, S. Biomass Pyrolysis. AltEnergyMag, 2 February 2009. Available online: https://www.altenergymag.com/article/2009/02/biomass-pyrolysis/502/ (accessed on 29 December 2022).
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A Review on the Upgradation Techniques of Pyrolysis Oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose Biomass Pyrolysis for Bio-Oil Production: A Review of Biomass Pre-Treatment Methods for Production of Drop-in Fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Rodrigues Santos Alves, V. Advances in the Pyrolysis Process and the Generation of Bioenergy. In Recent Perspectives in Pyrolysis Research; Bartoli, M., Giorcelli, M., Eds.; IntechOpen: London, UK, 2022; ISBN 978-1-83969-914-6. [Google Scholar]
- Wright, M.M.; Daugaard, D.E.; Satrio, J.A.; Brown, R.C. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels. Fuel 2010, 89, S2–S10. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Riba, J.-R.; Puig, R.; Navarro, P. Review of Micro- and Small-Scale Technologies to Produce Electricity and Heat from Mediterranean Forests׳ Wood Chips. Renew. Sustain. Energy Rev. 2015, 43, 143–155. [Google Scholar] [CrossRef]
- Obernberger, I. Decentralized Biomass Combustion: State of the Art and Future Development 11 Paper to the Keynote Lecture of the Session “Processes for Decentralized Heat and Power Production Based on Cumbustion’’ at the 9th European Bioenergy Conference, June 1996, Copenhagen, Denmark. Biomass Bioenergy 1998, 14, 33–56. [Google Scholar] [CrossRef]
- Morató, T.; Vaezi, M.; Kumar, A. Techno-Economic Assessment of Biomass Combustion Technologies to Generate Electricity in South America: A Case Study for Bolivia. Renew. Sustain. Energy Rev. 2020, 134, 110154. [Google Scholar] [CrossRef]
- 2016 Tiwi Islands, Census All Persons QuickStats | Australian Bureau of Statistics. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2016/702031060 (accessed on 23 August 2022).
- Solar Rolling out in Northern Territory Off-Grid Communities—Australian Renewable Energy Agency (ARENA). Available online: https://arena.gov.au/news/solar-rolling-out-in-northern-territory-off-grid-communities/ (accessed on 23 August 2022).
- Tiwi Forestry, Melville Island, Northern Territory. Available online: https://www.tiwiplantations.com.au/ (accessed on 14 September 2022).
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Mahlia, T.M.I. Potential Thermochemical Conversion of Bioenergy from Acacia Species in Brunei Darussalam: A Review. Renew. Sustain. Energy Rev. 2018, 82, 3060–3076. [Google Scholar] [CrossRef]
- Amirta, R.; Anwar, T.; Sudrajat; Yuliansyah; Suwinarti, W. Trial Production of Fuel Pellet from Acacia Mangium Bark Waste Biomass. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012040. [Google Scholar] [CrossRef]
- Crespo, Y.A.; Naranjo, R.A.; Quitana, Y.G.; Sanchez, C.G.; Sanchez, E.M.S. Optimisation and Characterisation of Bio-Oil Produced by Acacia Mangium Willd Wood Pyrolysis. Wood Sci. Technol. 2017, 51, 1155–1171. [Google Scholar] [CrossRef]
- Marsoem, S.N.; Irawati, D. Basic Properties of Acacia Mangium and Acacia Auriculiformis as a Heating Fuel. AIP Conf. Proc. 2016, 1755, 130007. [Google Scholar] [CrossRef] [Green Version]
- 2016 Wurrumiyanga, Census All Persons QuickStats | Australian Bureau of Statistics. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2016/SSC70295 (accessed on 23 August 2022).
- 2016 Pirlangimpi, Census All Persons QuickStats | Australian Bureau of Statistics. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2016/SSC70226 (accessed on 23 August 2022).
- 2016 Milikapiti, Census All Persons QuickStats | Australian Bureau of Statistics. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2016/SSC70185 (accessed on 23 August 2022).
- 2016 Maningrida, Census All Persons QuickStats | Australian Bureau of Statistics. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2016/UCL715003 (accessed on 23 August 2022).
- Power and Water Corporation, Northern Territory, Solar Energy Transformation Program Performance Report #1 for 1 July 2018 to 30 June 2019, NT, Australia 2020. Available online: https://arena.gov.au/assets/2020/10/setup-performance-report-1.pdf (accessed on 7 December 2021).
- Power and Water Corporation, Northern Territory. The Solar Energy Transformation Program (SETuP)—Lessons and Opportunities for High Renewables Mini-Grids. In Proceedings of the ARENA Insights Forum, 25 June 2019. Available online: https://www.powerwater.com.au/__data/assets/pdf_file/0019/32329/SETuP-Presentation-to-ARENA-Insights-forum-June-2019.pdf (accessed on 7 December 2021).
- Whittle, L.; Lock, P.; Hug, B. Economic Potential for New Plantation Establishment in Australia: Outlook to 2050: Research Report 19.4; Australian Bureau of Agriculture, Fisheries and Forestry: Sydney, NSW, Australia, 2019. [Google Scholar] [CrossRef]
- Australian Institute of Petroleum Historical ULP and Diesel TGP Data | Australian Institute of Petroleum. Available online: http://www.aip.com.au/historical-ulp-and-diesel-tgp-data (accessed on 23 August 2022).
- Carbon Credits (Carbon Farming Initiative) Act, Australia 2011.
- ACCUs.Com.Au. Available online: https://www.accus.com.au/ (accessed on 13 September 2022).
- Oasmaa, A.; Leppamaki, E.; Koponen, P.; Levander, J.; Tapola, E. Physical Characterisation of Biomass-Based Pyrolysis Liquids Application of Standard Fuel Oil Analyses; Technical Research Centre of Finland (VTT): Espoo, Finland, 1997; ISBN 951–38–5051–X. [Google Scholar]
- Tchichelle, S.V.; Mareschal, L.; Koutika, L.-S.; Epron, D. Biomass Production, Nitrogen Accumulation and Symbiotic Nitrogen Fixation in a Mixed-Species Plantation of Eucalypt and Acacia on a Nutrient-Poor Tropical Soil. For. Ecol. Manag. 2017, 403, 103–111. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Database—Harmonised Indices of Consumer Prices (HICP)—Eurostat. Available online: https://ec.europa.eu/eurostat/web/hicp/data/database (accessed on 23 August 2022).
- Australian Tax Office Calendar Year Ending. 31 December 2021. Available online: https://www.ato.gov.au/Tax-professionals/TP/Calendar-year-ending-31-December-2021/ (accessed on 23 August 2022).
- Pawar, A.; Panwar, N.L.; Salvi, B.L. Comprehensive Review on Pyrolytic Oil Production, Upgrading and Its Utilization. J. Mater. Cycles Waste Manag. 2020, 22, 1712–1722. [Google Scholar] [CrossRef]
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of Biomass Energy Utilization in Combustion and Gasification Plants: Effects of Logistic Variables. Biomass Bioenergy 2005, 28, 35–51. [Google Scholar] [CrossRef]
- CPI Home: U.S. Bureau of Labor Statistics. Available online: https://www.bls.gov/cpi/ (accessed on 23 August 2022).
- Riva, G. Analisi delle Iniziative per la produzione di Energia Elettrica da Biomasse Agro—Industriali in Italia (Analysis of Initiatives for the Production of Electricity from Agro-Industrial Biomass in Italy); April 2003. Available online: https://www.cti2000.it/utils/downloadfile.php?table=pubblicazioni&id=34855 (accessed on 20 June 2022).
- Shoal Bay Weigh Bridge Fees. Available online: https://www.darwin.nt.gov.au/sites/default/files/publications/attachments/city-of-darwin-weighbridge-Fees-Charges.pdf (accessed on 23 August 2022).
- Heriansyah, I.; Miyakuni, K.; Kato, T.; Kiyono, Y.; Kanazawa, Y. Growth characteristics and biomass accumulations of acacia mangium under different management practices in indonesia. J. Trop. For. Sci. 2007, 19, 226–235. [Google Scholar]
- Hanaki, K.; Portugal-Pereira, J. The Effect of Biofuel Production on Greenhouse Gas Emission Reductions. In Biofuels and Sustainability; Takeuchi, K., Shiroyama, H., Saito, O., Matsuura, M., Eds.; Science for Sustainable Societies; Springer: Tokyo, Japan, 2018; pp. 53–71. ISBN 978-4-431-54894-2. [Google Scholar]
- International Carbon Market. Available online: https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/international-carbon-market_en (accessed on 23 August 2022).
- EU Carbon Permits—2022 Data—2005-2021 Historical—2023 Forecast–Price–Quote. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 23 August 2022).
- Trombley, J.; Thennadil, S. Wider Benefits and Industry Blueprint for the Integration of Solar Power into LNG Plants; National Energy Resources Australia (NERA): Perth, Australia, 2021; Available online: https://12259-console.memberconnex.com/Attachment?Action=Download&Attachment_id=372 (accessed on 29 December 2022).
- Sangha, K.K.; Duvert, A.; Archer, R.; Russell-Smith, J. Unrealised Economic Opportunities in Remote Indigenous Communities: Case Studies from Northern Australia. Soc. Sci. Humanit. Open 2020, 2, 100093. [Google Scholar] [CrossRef]
- Thrän, D.; Dotzauer, M.; Lenz, V.; Liebetrau, J.; Ortwein, A. Flexible Bioenergy Supply for Balancing Fluctuating Renewables in the Heat and Power Sector—A Review of Technologies and Concepts. Energ. Sustain. Soc. 2015, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Australia. Division of National Mapping, Australian Surveying and Land Information Group. Atlas of Australian Resources; Division of National Mapping: Canberra, ACT, Australia, 1980; ISBN 0642514585.
- World Wide Wattle. Available online: http://worldwidewattle.com/ (accessed on 25 August 2022).
- Ahmed, A.; Hidayat, S.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Thermochemical Characterisation of Acacia Auriculiformis Tree Parts via Proximate, Ultimate, TGA, DTG, Calorific Value and FTIR Spectroscopy Analyses to Evaluate Their Potential as a Biofuel Resource. Biofuels 2021, 12, 9–20. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Rubilar, R.A.; Maier, C.A.; Acuña, E.A.; Cook, R.L. Biomass and Nutrient Mass of Acacia Dealbata and Eucalyptus Globulus Bioenergy Plantations. Biomass Bioenergy 2017, 97, 162–171. [Google Scholar] [CrossRef]
- Laclau, J.-P.; Bouillet, J.-P.; Gonçalves, J.L.M.; Silva, E.V.; Jourdan, C.; Cunha, M.C.S.; Moreira, M.R.; Saint-André, L.; Maquère, V.; Nouvellon, Y.; et al. Mixed-Species Plantations of Acacia Mangium and Eucalyptus Grandis in Brazil. For. Ecol. Manag. 2008, 255, 3905–3917. [Google Scholar] [CrossRef]
- le Maire, G.; Nouvellon, Y.; Christina, M.; Ponzoni, F.J.; Gonçalves, J.L.M.; Bouillet, J.-P.; Laclau, J.-P. Tree and Stand Light Use Efficiencies over a Full Rotation of Single- and Mixed-Species Eucalyptus Grandis and Acacia Mangium Plantations. For. Ecol. Manag. 2013, 288, 31–42. [Google Scholar] [CrossRef]
- Reza, M.S.; Ahmed, A.; Caesarendra, W.; Abu Bakar, M.S.; Shams, S.; Saidur, R.; Aslfattahi, N.; Azad, A.K. Acacia Holosericea: An Invasive Species for Bio-Char, Bio-Oil, and Biogas Production. Bioengineering 2019, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Koutika, L.-S.; Richardson, D.M. Acacia Mangium Willd: Benefits and Threats Associated with Its Increasing Use around the World. For. Ecosyst. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Vera, I.; Goosen, N.; Batidzirai, B.; Hoefnagels, R.; van der Hilst, F. Bioenergy Potential from Invasive Alien Plants: Environmental and Socio-Economic Impacts in Eastern Cape, South Africa. Biomass Bioenergy 2022, 158, 106340. [Google Scholar] [CrossRef]
- Etchells, H.; O’Donnell, A.J.; Lachlan McCaw, W.; Grierson, P.F. Fire Severity Impacts on Tree Mortality and Post-Fire Recruitment in Tall Eucalypt Forests of Southwest Australia. For. Ecol. Manag. 2020, 459, 117850. [Google Scholar] [CrossRef]
- Stephens, S.L.; Agee, J.K.; Fulé, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing Forests and Fire in Changing Climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef]
Sample | MC (%) | AC (%) | HHV (GJ/odt) | LHV (GJ/odt) | C (%) | H (%) | N (%) | S (%) | O (%) |
---|---|---|---|---|---|---|---|---|---|
Chips | 38.95 | 0.35 | 20.11 | 18.44 | 49.88 | 5.89 | 0.00 | 0.00 | 38.99 |
Fines | 32.34 | 0.42 | 19.91 | 17.90 | 50.20 | 7.10 | 0.27 | 0.04 | 39.22 |
Sticks | 10.20 | 1.76 | 20.95 | 19.25 | 51.75 | 6.02 | 0.87 | 0.02 | 34.84 |
Leaves | 3.58 | 20.69 | 18.88 | 52.68 | 6.39 | 2.35 | 0.00 | 30.61 | |
Shredded wood | 1.98 | 20.03 | 18.36 | 49.78 | 5.88 | 0.23 | 0.00 | 37.07 | |
Bark | - | 5.58 * | - | - | - | - | - | - | - |
Regrowth trunk | 47.62 | 0.60 | 19.70 | 18.00 | 48.92 | 5.99 | 0.03 | 0.01 | 39.40 |
Trunk (2018 wildfire) | 20.14 | 0.87 | 20.77 | 19.11 | 51.04 | 5.89 | 0.00 | 0.00 | 36.42 |
Trunk (2020 wildfire) | 24.74 | 0.92 | 20.25 | 18.66 | 51.69 | 5.62 | 0.00 | 0.00 | 38.46 |
Process | Petroleum Diesel (AUD Millions) | Bio-Oil (AUD Millions) |
---|---|---|
Fast pyrolysis | - | 11.9 |
Bio-oil storage | - | 0.2 |
Diesel generators | 3.4 | 3.4 |
Grid connection | 0.7 | 0.7 |
Total capital costs | 4.1 | 16.2 (excluding pre-treatment) |
Annual Capital costs | 0.4 | 1.4 (excluding pre-treatment) |
Category | Petroleum Diesel (AUD Millions) | Bio-Oil (AUD Millions) |
---|---|---|
Labor | 0.19 | 0.56 |
Maintenance | 0.27 | 0.58 |
Insurance and overheads | 0.07 | 0.33 |
Biomass (@175 AUD/odt) | - | 1.40 |
Petroleum diesel (@44.0 AUD/GJ) | 4.19 | 0.32 |
Total operational costs | 4.7 | 3.2 (excluding pre-treatment) |
Total annual costs | 5.1 | 5.7 (including pre-treatment) |
Caputo (Fluidized Bed) | Morató (Fluidized Bed) | Morató (Grate-Fired) | |
---|---|---|---|
Power generation | 5.54 | - | - |
Biomass storage and handling | 0.43 | - | - |
Fumes treatment | 1.00 | - | - |
Piping | 0.65 | - | - |
Electrical | 1.52 | - | - |
Civil works | 3.30 | - | - |
Direct installation | 2.10 | - | - |
Auxiliary services | 1.05 | - | - |
Instrumentation and controls | 0.70 | - | - |
Site preparation | 0.70 | - | - |
Engineering | 0.84 | - | - |
Start-up | 0.70 | - | - |
Diesel generator (1 MWe) | 2.47 | 2.47 | 2.47 |
Total capital costs | 21.0 | 14.9 | 9.4 |
Annual capital costs | 1.8 | 1.3 | 0.8 |
Caputo (Fluidized Bed) | Morató (Fluidized Bed) | Morató (Grate-Fired) | |
---|---|---|---|
Labor | 0.75 | 0.75 | 0.75 |
Maintenance | 0.31 | 0.18 | 0.14 |
Insurance and overheads | 0.21 | 0.12 | 0.09 |
Ash transport | 0.01 | 0.01 | 0.01 |
Ash disposal | 0.01 | 0.01 | 0.01 |
Biomass (@175 AUD/odt) | 1.3 | 1.3 | 1.3 |
Petroleum diesel (@44.0 AUD/GJ) | 0.36 | 0.36 | 0.36 |
Total operational costs | 3.0 | 2.7 | 2.7 |
Total annual costs | 4.8 | 3.8 | 3.5 |
Feedstock LHV | Bio-Oil (AUD/kWh) (% Change) | Direct Combustion (AUD/kWh) (% Change) |
---|---|---|
16 GJ/odt | 0.686 (+5.4%) | 0.477 (+4.3%) |
18 GJ/odt | 0.651 (-) | 0.457 (-) |
20 GJ/odt | 0.643 (−1.2%) | 0.442 (−3.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombley, J.B.; Sangha, K.K.; Andersen, A.N.; Thennadil, S.N. Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study. Energies 2023, 16, 666. https://doi.org/10.3390/en16020666
Trombley JB, Sangha KK, Andersen AN, Thennadil SN. Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study. Energies. 2023; 16(2):666. https://doi.org/10.3390/en16020666
Chicago/Turabian StyleTrombley, Jeremy B., Kamaljit K. Sangha, Alan N. Andersen, and Suresh N. Thennadil. 2023. "Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study" Energies 16, no. 2: 666. https://doi.org/10.3390/en16020666
APA StyleTrombley, J. B., Sangha, K. K., Andersen, A. N., & Thennadil, S. N. (2023). Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study. Energies, 16(2), 666. https://doi.org/10.3390/en16020666