Influencing Factors Analysis and Optimization of Hydraulic Fracturing in Multi-Layered and Thin Tight Sandstone Gas Reservoir
Abstract
:1. Introduction
2. Description of Fractured Well Production Status in Multi-Layered and Thin Tight Sandstone Gas Reservoirs
2.1. Geological Condition of Multi-Layered and Thin Tight Sandstone Gas Reservoirs
2.2. Statistics for the Geomechanical Parameters of Multi-Layered and Thin Tight Sandstone Gas Reservoirs
3. Construction of a 3D Hydraulic Fracture Propagation Numerical Model in Multi-Layered Reservoirs
4. Geological and Fracturing Operational Parameters Influencing Analysis
4.1. Theoretical Numerical Model for Sensitivity Analysis
4.2. Sensitivity Analysis of the Gas Layer and Inter-Layer Thicknesses
4.3. Sensitivity Analysis of the Geo-Stress Difference between the Gas Layer and the Inter-Layers
4.4. Sensitivity Analysis of the Prepad Fluid and Sand-Carrying Fluid Volume Percentage
4.5. Sensitivity Analysis of Multi-Slug Sand Filling and Secondary Sand Filling Fracturing Schemes
5. Example: The Hydraulic Fracturing Simulation of a Low-Production Well in the Multi-Layered and Thin Tight Sandstone Gas Reservoir and the Fracturing Scheme Optimization
5.1. Geological Condition of a Low-Production Well and the Hydraulic Fracturing Simulation Result
5.2. Optimization Study on the Hydraulic Fracturing Scheme of Well X-1
5.3. Application of the Optimized Hydraulic Fracturing Scheme for Other Low-Production Wells
6. Conclusions
- (1)
- In contrast to common gas reservoirs, multi-layered and thin tight sandstone gas reservoirs have a complex and overlapping vertical structure. The thickness of gas layers in this type of reservoir is usually less than 5 m, while the inter-layers are also typically thin and fragile. Improper fracturing schemes make it hard to control the fracture height in this kind of reservoir and can easily result in bad fracture shape and low production.
- (2)
- The geo-stress difference and the thickness difference between the gas layers and the interlayers have significant impacts on fracture propagation; a thinner gas layer needs thicker interlayers and higher geo-stress differences to control the fracture height.
- (3)
- Fracture propagation primarily takes place during the injection of the prepad fluid. A higher volume percentage of prepad fluid helps to create a longer fracture length; low fracturing fluid viscosity at a low injection rate is better for fracture height control in thin formations with weak interlayers.
- (4)
- The multi-slug sand filling method performs better than the secondary sand filling method. It carries the proppant further into the generated fractures to create a longer propped length and creates an additional barrier at the bottom of the fracture to avoid the fracture penetrating a thin interlayer, while the two-slug sand filling method shows the best performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, C.; Zhao, Q.; Chen, J.; Li, J.; Yang, Z.; Sun, Q.; Lu, J.; Zhang, G. Natural gas in China: Development trend and strategic forecast. Nat. Gas Ind. B 2018, 5, 380–390. [Google Scholar] [CrossRef]
- Fisher, Q.J.; Haneef, J.; Grattoni, C.A.; Allshorn, S.; Lorinczi, P. Permeability of fault rocks in siliciclastic reservoirs: Recent advances. Mar. Pet. Geol. 2018, 91, 29–42. [Google Scholar] [CrossRef]
- Baird, A.; Kendall, J.M.; Verdon, J.P.; Wuestefeld, A.; Noble, T.E.; Li, Y.; Dutko, M.; Fisher, Q.J. Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization. Geophys. J. Int. 2013, 195, 1120–1131. [Google Scholar] [CrossRef]
- Yao, J.; Sun, Z.X.; Zhang, K.; Zeng, Q.; Yan, X.; Zhang, M. Scientific engineering problems and development trends in unconventional oil and gas reservoirs. Pet. Sci. Bull. 2016, 1, 128–142. [Google Scholar]
- Lin, J.E. Proceedings of the International Field Exploration and Development Conference; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Medici, G.; West, L.J. Review of groundwater flow and contaminant transport modelling approaches for the Sherwood Sandstone aquifer, UK; insights from analogous successions worldwide. Q. J. Eng. Geol. Hydrogeol. 2022, 55, qjegh2021-176. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Reply to discussion on ‘Review of groundwater flow and contaminant transport modelling approaches for the Sherwood Sandstone aquifer, UK; insights from analogous successions worldwide’by Medici and West (QJEGH, 55, qjegh2021-176). Q. J. Eng. Geol. Hydrogeol. 2023, 56, qjegh2022-097. [Google Scholar] [CrossRef]
- Zheltov, A.K., III. Formation of Vertical Fractures by Means of Highly Viscous Liquid. In Proceedings of the 4th World Petroleum Congress, Rome, Italy, 6–15 June 1955. [Google Scholar]
- Perkins, T.K.; Kern, L.R. Widths of Hydraulic Fractures. J. Pet. Technol. 1961, 13, 937–949. [Google Scholar] [CrossRef]
- Gordeliy, E.; Peirce, A. Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput. Methods Appl. Mech. Eng. 2013, 253, 305–322. [Google Scholar] [CrossRef]
- Lin, R.; Ren, L.; Zhao, J.; Wu, L.; Li, Y. Cluster spacing optimization of multi-stage fracturing in horizontal shale gas wells based on stimulated reservoir volume evaluation. Arab. J. Geosci. 2017, 10, 38. [Google Scholar] [CrossRef]
- Garcia, X.; Nagel, N.; Zhang, F.; Sanchez-Nagel, M.; Lee, B. Revisiting Vertical Hydraulic Fracture Propagation Through Layered Formations—A Numerical Evaluation. In Proceeding of the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013. [Google Scholar]
- Palmer, I.D.; Craig, H.R. Modeling of Asymmetric Vertical Growth in Elongated Hydraulic Fractures and Application to First MWX Stimulation. In Proceedings of the SPE Unconventional Gas Recovery Symposium, Pittsburgh, PA, USA, 13–15 May 1984. [Google Scholar]
- Weng, X.; Kresse, O.; Chuprakov, D.; Cohen, C.E.; Prioul, R.; Ganguly, U. Applying complex fracture model and integrated workflow in unconventional reservoirs. J. Pet. Sci. Eng. 2014, 124, 468–483. [Google Scholar] [CrossRef]
- Du, X.; Cheng, L.; Chen, J.; Cai, J.; Niu, L.; Cao, R. Numerical Investigation for Three-Dimensional Multiscale Fracture Networks Based on a Coupled Hybrid Model. Energies 2021, 14, 6354. [Google Scholar] [CrossRef]
- Li, Z.; Gan, B.; Li, Z.; Zhang, H.; Wang, D.; Zhang, Y.; Wang, Y. Kinetic mechanisms of methane hydrate replacement and carbon dioxide hydrate reorganization. Chem. Eng. J. 2023, 477, 146973. [Google Scholar] [CrossRef]
- Parvizi, H.; Rezaei-Gomari, S.; Nabhani, F.; Turner, A.; Feng, W.C. Hydraulic fracturing performance evaluation in tight sand gas reservoirs with high perm streaks and natural fractures. In Proceedings of the SPE Europec featured at EAGE Conference and Exhibition, Madrid, Spain, 1–4 June 2015. [Google Scholar]
- Gao, Q.; Cheng, Y.; Yan, C. A 3D numerical model for investigation of hydraulic fracture configuration in multilayered tight sandstone gas reservoirs. J. Pet. Explor. Prod. Technol. 2017, 8, 1413–1424. [Google Scholar] [CrossRef]
- Wang, Y.; Ju, B.; Wang, S.; Yang, Z.; Liu, Q. A tight sandstone multi-physical hydraulic fractures simulator study and its field application. Petroleum 2019, 6, 198–205. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.P.; Sun, W. Hydraulic fracturing in transversely isotropic tight sandstone reservoirs: A numerical study based on bonded-particle model approach. J. Struct. Geol. 2020, 136, 104068. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, Y.; Xu, B.; Du, X.; Gai, S. Numerical Simulation and Sensitivity Analysis of Hydraulic Fracturing in Multilayered Thin Tight Sandstone Gas Reservoir. Geofluids 2023, 2023, 8310206. [Google Scholar] [CrossRef]
- Chen, B.; Barboza, B.R.; Sun, Y.; Bai, J.; Thomas, H.R.; Dutko, M.; Cottrell, M.; Li, C. A review of hydraulic fracturing simulation. Arch. Comput. Methods Eng. 2021, 29, 1–58. [Google Scholar] [CrossRef]
- Clifton, R.J.; Abou-Sayed, A.S. On the computation of the three-dimensional geometry of hydraulic fractures. In Proceedings of the Symposium on Low Permeability Gas Reservoirs, Denver, CO, USA, 20–22 May 1979. [Google Scholar]
- Siebrits, E.; Peirce, A.P. An efficient multi-layer planar 3D fracture growth algorithm using a fixed mesh approach. Int. J. Numer. Methods Eng. 2001, 53, 691–717. [Google Scholar] [CrossRef]
- Rahman, M.K.; Hossain, M.M.; Rahman, S.S. An analytical method for mixed-mode propagation of pressurized fractures in remotely compressed rocks. Int. J. Fract. 2000, 103, 243–258. [Google Scholar] [CrossRef]
- Vandamme, L.; Curran, J.H. A three-dimensional hydraulic fracturing simulator. Int. J. Numer. Methods Eng. 1989, 28, 909–927. [Google Scholar] [CrossRef]
- Advani, S.H.; Lee, T.S.; Lee, J.K. Three-dimensional modeling of hydraulic fractures in layered media: Part I—Finite element formulations. J. Energy Resour. Technol. 1990, 112, 1–9. [Google Scholar] [CrossRef]
- Blasingame, T.A.; Johnston, J.L.; Lee, W.J. Type-curve analysis using the pressure integral method. In Proceedings of the SPE California Regional Meeting, Bakersfield, CA, USA, 5–7 April 1989. [Google Scholar]
Type of Layer | Layer Type Description |
---|---|
Layer type 1 | Tight sandstone layer |
Layer type 2 | Mudstone layer |
Layer type 3 | Coal seam layer |
Layer type 4 | Marl layer |
Thickness (m) | Geo-Stress (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |
Layer type 1 | 6.0 | 1.6 | 3.8 | 31.0 | 25.5 | 28.0 | 59.6 | 42.1 | 50.5 | 0.3 | 0.2 | 0.2 |
Layer type 2 | 7.9 | 2.2 | 4.7 | 37.9 | 29.7 | 34.0 | 50.8 | 28.2 | 38.2 | 0.3 | 0.3 | 0.3 |
Layer type 3 | 3.2 | 1.0 | 2.2 | 35.2 | 31.4 | 33.4 | 9.7 | 4.9 | 7.0 | 0.4 | 0.4 | 0.4 |
Layer type 4 | 12.2 | 5.3 | 8.3 | 36.6 | 29.5 | 33.6 | 79.8 | 62.8 | 73.1 | 0.3 | 0.3 | 0.3 |
Lithology | Top Depth (m) | Bottom Depth (m) | Thickness (m) | Geo-Stress (MPa) | Elastic Modulus (104 MPa) | Poisson’s Ratio | Sg (%) |
---|---|---|---|---|---|---|---|
Mudstone | 1950 | 1990 | 40 | 34 | 3.9 | 0.3 | 0 |
Dry sandstone | 1990 | 1995 | 5 | 27 | 5.1 | 0.2 | 0 |
Mudstone | 1995 | 2000 | 5 | 34 | 3.9 | 0.3 | 0 |
Gas sandstone | 2000 | 2005 | 5 | 27 | 5.1 | 0.2 | 54 |
Mudstone | 2005 | 2010 | 5 | 34 | 3.9 | 0.3 | 0 |
Dry sandstone | 2010 | 2015 | 5 | 27 | 5.1 | 0.2 | 0 |
Mudstone | 2015 | 2055 | 40 | 34 | 3.9 | 0.3 | 0 |
Fracturing Injection Stage | Injection Volume (m3) | Proppant Concentration (kg/m3) | Injection Rate (m3/min) | Single-Stage Injection Time (min) | Total Injection Time (min) | Fluid Type | Proppant Type |
---|---|---|---|---|---|---|---|
1 | 40 | 0 | 3.5 | 11.4 | 11.4 | Base fluid | / |
2 | 20 | 73 | 3.5 | 5.8 | 17.3 | Base fluid | 40/70 mesh |
3 | 35 | 0 | 3.5 | 10.0 | 27.3 | Base fluid | / |
4 | 15 | 102 | 3.5 | 4.5 | 31.7 | Gel | 30/50 mesh |
5 | 23 | 203 | 3.5 | 7.0 | 38.7 | Gel | 30/50 mesh |
6 | 30 | 290 | 3.5 | 9.5 | 48.2 | Gel | 30/50 mesh |
7 | 45 | 363 | 3.5 | 14.6 | 62.8 | Gel | 30/50 mesh |
8 | 35 | 435 | 3.5 | 11.6 | 74.4 | Gel | 30/50 mesh |
9 | 20 | 508 | 3.5 | 6.8 | 81.1 | Gel | 30/50 mesh |
Gas Layer Thickness | ||||||||
---|---|---|---|---|---|---|---|---|
1 m | 2 m | 5 m | 8 m | 10 m | 12 m | 15 m | ||
Inter-layer thickness | 1 m | No | No | No | No | No | No | No |
2 m | No | No | No | No | No | No | No | |
5 m | No | No | No | No | No | No | Yes | |
8 m | No | No | No | No | No | Yes | Yes | |
10 m | No | No | No | No | Yes | Yes | Yes | |
12 m | No | No | No | Yes | Yes | Yes | Yes | |
15 m | No | No | Yes | Yes | Yes | Yes | Yes |
Geo-Stress Difference | ||||||
---|---|---|---|---|---|---|
3 Mpa | 6 Mpa | 9 Mpa | 12 Mpa | 15 Mpa | ||
Inter-layer thickness | 1 m | No | No | No | No | No |
2 m | No | No | No | No | No | |
5 m | No | No | No | No | Yes | |
8 m | No | No | No | Yes | Yes | |
10 m | No | No | Yes | Yes | Yes | |
12 m | No | Yes | Yes | Yes | Yes | |
15 m | No | Yes | Yes | Yes | Yes |
Lithology | Top Depth (m) | Bottom Depth (m) | Thickness (m) | Geo-Stress (MPa) | Elastic Modulus (104 MPa) | Poisson’s Ratio | Sg (%) | Poro (%) | Perm (mD) |
---|---|---|---|---|---|---|---|---|---|
Coal | 2072.9 | 2074.1 | 1.2 | 30.2 | 1.57 | 0.22 | 0 | 0 | 0.01 |
Mudstone | 2074.1 | 2075.4 | 1.3 | 36.7 | 2.29 | 0.33 | 0 | 0 | 0.01 |
Coal | 2075.4 | 2086.9 | 11.5 | 33.2 | 0.89 | 0.27 | 0 | 0 | 0.01 |
Mudstone | 2086.9 | 2095.6 | 8.7 | 35.3 | 3.35 | 0.3 | 0 | 0 | 0.01 |
Gas sandstone | 2095.6 | 2098.3 | 2.7 | 27.7 | 4.68 | 0.17 | 54 | 9 | 0.83 |
Gas sandstone | 2098.3 | 2101.3 | 3 | 30.7 | 4.6 | 0.23 | 56 | 9 | 0.76 |
Mudstone | 2101.3 | 2102.3 | 1 | 36.8 | 4.4 | 0.32 | 0 | 1 | 0.02 |
Coal | 2102.3 | 2104.7 | 2.4 | 36 | 4.9 | 0.31 | 0 | 3 | 0.12 |
Mudstone | 2104.7 | 2105.4 | 0.7 | 37.6 | 3.09 | 0.33 | 0 | 2 | 0.16 |
Dry sandstone | 2105.4 | 2108.3 | 2.9 | 33.1 | 4.86 | 0.27 | 0 | 8 | 0.29 |
Mudstone | 2108.3 | 2109.4 | 1.1 | 33 | 4.76 | 0.27 | 0 | 0 | 0.56 |
Dry sandstone | 2109.4 | 2117.4 | 8 | 31.2 | 5.18 | 0.23 | 0 | 7 | 0.22 |
Mudstone | 2117.4 | 2118.2 | 0.8 | 36.9 | 5.89 | 0.32 | 0 | 0 | 0.01 |
Marl | 2118.2 | 2120.1 | 1.9 | 39.8 | 5.26 | 0.36 | 0 | 0 | 0.01 |
Mudstone | 2120.1 | 2120.9 | 0.8 | 35.8 | 4.14 | 0.31 | 0 | 0 | 0.01 |
Marl | 2120.9 | 2124.5 | 3.6 | 37.5 | 5.91 | 0.33 | 0 | 0 | 0.01 |
Mudstone | 2124.5 | 2124.6 | 0.1 | 36.3 | 6.07 | 0.31 | 0 | 0 | 0.01 |
Dry sandstone | 2124.6 | 2128 | 3.4 | 33.4 | 5.31 | 0.27 | 0 | 8 | 0.26 |
Marl | 2128 | 2134.3 | 6.3 | 32.9 | 4.33 | 0.26 | 0 | 0 | 0.01 |
Fracturing Injection Stage | Injection Volume (m3) | Proppant Concentration (kg/m3) | Injection Rate (m3/min) | Single-Stage Injection Time (min) | Total Injection Time (min) | Fluid Type | Proppant Type |
---|---|---|---|---|---|---|---|
1 | 27.1 | / | 3.6 | 7.6 | 7.6 | Base fluid | / |
2 | 34.2 | 75.5 | 3 | 13.7 | 21.3 | Base fluid | 40/70 mesh |
3 | 19.8 | / | 3 | 7.9 | 29.2 | Base fluid | / |
4 | 40.1 | 106.6 | 3 | 12.9 | 42.1 | Gel | 30/50 mesh |
5 | 34.2 | 213.3 | 3.0 | 11.4 | 53.5 | Gel | 30/50 mesh |
6 | 32.5 | 304.4 | 3.4 | 9.5 | 63.0 | Gel | 30/50 mesh |
7 | 33.6 | 304.4 | 3.4 | 1.9 | 65.0 | Gel | 30/50 mesh |
8 | 33.4 | 379.9 | 3.4 | 9.8 | 74.8 | Gel | 30/50 mesh |
9 | 34.3 | 456.5 | 3.7 | 9.3 | 84.1 | Gel | 30/50 mesh |
10 | 18.4 | 304.4 | 3.7 | 5.0 | 91.0 | Gel | 30/50 mesh |
11 | 14.8 | 379.9 | 3.7 | 4.0 | 95.0 | Gel | 30/50 mesh |
12 | 10.0 | 456.5 | 3.7 | 2.7 | 97.7 | Gel | 30/50 mesh |
Fracturing Injection Stage | Injection Volume (m3) | Proppant Concentration (kg/m3) | Injection Rate (m3/min) | Single-Stage Injection Time (min) | Total Injection Time (min) | Fluid Type | Proppant Type |
---|---|---|---|---|---|---|---|
1 | 15.0 | / | 2.0 | 7.5 | 7.5 | Slick water | / |
2 | 25.0 | 76 | 2.5 | 10.0 | 17.5 | Base-fluid | 40/70 mesh |
3 | 15.0 | / | 2.5 | 6.0 | 23.5 | Base-fluid | / |
4 | 25.0 | 95 | 2.5 | 10.0 | 33.5 | Base-fluid | 40/70 mesh |
5 | 15.0 | / | 3.5 | 4.3 | 37.7 | Base-fluid | / |
6 | 30.1 | 136 | 4.0 | 7.5 | 45.2 | Gel | 30/50 mesh |
7 | 34.2 | 253 | 5.0 | 6.8 | 52.1 | Gel | 30/50 mesh |
8 | 35.5 | 355 | 5.0 | 6.5 | 58.6 | Gel | 30/50 mesh |
9 | 36.6 | 409 | 6.0 | 6.1 | 64.7 | Gel | 30/50 mesh |
10 | 33.0 | 486 | 6.0 | 5.5 | 70.2 | Gel | 30/50 mesh |
11 | 23.0 | 559 | 6.0 | 3.8 | 74.0 | Gel | 30/50 mesh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Bai, Y.; Fang, M.; Meng, F. Influencing Factors Analysis and Optimization of Hydraulic Fracturing in Multi-Layered and Thin Tight Sandstone Gas Reservoir. Energies 2023, 16, 7797. https://doi.org/10.3390/en16237797
Zhang H, Bai Y, Fang M, Meng F. Influencing Factors Analysis and Optimization of Hydraulic Fracturing in Multi-Layered and Thin Tight Sandstone Gas Reservoir. Energies. 2023; 16(23):7797. https://doi.org/10.3390/en16237797
Chicago/Turabian StyleZhang, Hao, Yuhu Bai, Maojun Fang, and Fankun Meng. 2023. "Influencing Factors Analysis and Optimization of Hydraulic Fracturing in Multi-Layered and Thin Tight Sandstone Gas Reservoir" Energies 16, no. 23: 7797. https://doi.org/10.3390/en16237797
APA StyleZhang, H., Bai, Y., Fang, M., & Meng, F. (2023). Influencing Factors Analysis and Optimization of Hydraulic Fracturing in Multi-Layered and Thin Tight Sandstone Gas Reservoir. Energies, 16(23), 7797. https://doi.org/10.3390/en16237797