Emergency Pump-Rate Regulation to Mitigate Water-Hammer Effect—An Integrated Data-Driven Strategy and Case Studies
Abstract
:1. Introduction
2. Methodology
2.1. Integrated Data-Driven Strategy of Real-Time Monitoring and Regulation
2.2. Summary of Numerical Models for Feature Extractions
2.3. Numerical Model for Estimating Water Hammer Effects
3. Results
3.1. Field Trials of Emergency Pump-Rate Regulations
3.2. Field Case of Sand Screen-Out
3.3. Impulsive Pressures from Water-Hammer Effect
4. Discussions
4.1. Performance of the Data-Driven Strategy
4.2. Limitations and Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhai, G.; Shirzaei, M.; Manga, M.; Chen, X. Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma. Proc. Natl. Acad. Sci. USA 2019, 116, 16228–16233. [Google Scholar] [CrossRef]
- Schultz, R.; Atkinson, G.; Eaton, D.W.; Gu, Y.J.; Kao, H. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science 2018, 359, 304–308. [Google Scholar] [CrossRef]
- Howarth, R.W.; Ingraffea, A.; Engelder, T. Should fracking stop? Nature 2011, 477, 271–275. [Google Scholar] [CrossRef]
- Osborn, S.G.; Vengosh, A.; Warner, N.R.; Jackson, R.B. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad. Sci. USA 2011, 108, 8172–8176. [Google Scholar] [CrossRef]
- Vidic, R.D.; Brantley, S.L.; Vandenbossche, J.M.; Yoxtheimer, D.; Abad, J.D. Impact of shale gas development on regional water quality. Science 2013, 340, 1235009. [Google Scholar] [CrossRef] [PubMed]
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.T.; Torres, V.M.; Thomas, J.; Sullivan, D.W.; Harrison, M.; Hendler, A.; Herndon, S.C.; Kolb, C.E.; Fraser, M.P.; Hill, A.D.; et al. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 17768–17773. [Google Scholar] [CrossRef] [PubMed]
- Warner, N.R.; Jackson, R.B.; Darrah, T.H.; Osborn, S.G.; Down, A.; Zhao, K.; White, A.; Vengosh, A. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc. Natl. Acad. Sci. USA 2012, 109, 11961–11966. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Vengosh, A.; Darrah, T.H.; Warner, N.R.; Down, A.; Poreda, R.J.; Osborn, S.G.; Zhao, K.; Karr, J.D. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc. Natl. Acad. Sci. USA 2013, 110, 11250–11255. [Google Scholar] [CrossRef]
- Darrah, T.H.; Vengosh, A.; Jackson, R.B.; Warner, N.R.; Poreda, R.J. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proc. Natl. Acad. Sci. USA 2014, 111, 14076–14081. [Google Scholar] [CrossRef]
- Woda, J.; Wen, T.; Oakley, D.; Yoxtheimer, D.; Engelder, T.; Castro, M.C.; Brantley, S.L. Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells. Proc. Natl. Acad. Sci. USA 2018, 115, 12349–12358. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, G.T.; Dorman, F.; Westland, J.L.; Yoxtheimer, D.; Grieve, P.; Sowers, T.; Humston-Fulmer, E.; Brantley, S.L. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proc. Natl. Acad. Sci. USA 2015, 112, 6325–6330. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D. Hydraulic fracturing near domestic groundwater wells. Proc. Natl. Acad. Sci. USA 2017, 114, 13138–13143. [Google Scholar] [CrossRef]
- Mumford, A.C.; Maloney, K.O.; Akob, D.M.; Nettemann, S.; Proctor, A.; Ditty, J.; Ulsamer, L.; Lookenbill, J.; Cozzarelli, I.M. Shale gas development has limited effects on stream biology and geochemistry in a gradient-based, multiparameter study in Pennsylvania. Proc. Natl. Acad. Sci. USA 2020, 117, 3670–3677. [Google Scholar] [CrossRef] [PubMed]
- Barth-Naftilan, E.; Sohng, J.; Saiers, J.E. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale. Proc. Natl. Acad. Sci. USA 2018, 115, 6970–6975. [Google Scholar] [CrossRef]
- Sherwood, O.A.; Rogers, J.D.; Lackey, G.; Burke, T.L.; Osborn, S.G.; Ryan, J.N. Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado. Proc. Natl. Acad. Sci. USA 2016, 113, 8391–8396. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Energy. Economic and National Security Impacts under a Hydraulic Fracturing Ban; U.S. Department of Energy: Wshington, DC, USA, 2021.
- Office of Governor. Governor Newsom Takes Action to Phase Out Oil Extraction in California. 2021. Available online: https://www.gov.ca.gov/2021/04/23/governor-newsom-takes-action-to-phase-out-oil-extraction-in-california/ (accessed on 17 January 2024).
- Mou, Y.; Lian, Z.; Sang, P.; Yu, H.; Zhang, Q.; Li, R. Study on water hammer effect on defective tubing failure in high pressure deep gas well. Eng. Fail. Anal. 2019, 106, 104154. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Luo, M.; Li, Y.; Zhang, W.; Wu, J.; Li, W. Effect of instantaneous shut-in on well bore integrity and safety of gas wells. J. Pet. Sci. Eng. 2020, 193, 107323. [Google Scholar] [CrossRef]
- Yan, W.; Zou, L.; Li, H.; Deng, J.; Ge, H.; Wang, H. Investigation of casing deformation during hydraulic fracturing in high geo-stress shale gas play. J. Pet. Sci. Eng. 2017, 150, 22–29. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, S.; Elsworth, D.; Liu, H.; Sun, B.; Geng, X. Review of fundamental studies of CO2 fracturing: Fracture propagation, propping and permeating. J. Pet. Sci. Eng. 2021, 205, 108823. [Google Scholar] [CrossRef]
- Xi, Y.; Lian, W.; Fan, L.; Tao, Q.; Guo, X. Research and engineering application of pre-stressed cementing technology for preventing micro-annulus caused by cyclic loading-unloading in deep shale gas horizontal wells. J. Pet. Sci. Eng. 2021, 200, 108359. [Google Scholar] [CrossRef]
- Holloway, M.D.; Rudd, O. Fracking: The Operations and Environmental Consequences of Hydraulic Fracturing; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schmitt, C.; Pluvinage, G.; Hadj-Taieb, E.; Akid, R. Water pipeline failure due to water hammer effects. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 1075–1082. [Google Scholar] [CrossRef]
- Achitaev, A.; Ilyushin, P.; Suslov, K.; Kobyletski, S. Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine. Energies 2022, 15, 8044. [Google Scholar] [CrossRef]
- Wang, H.; Hwang, J.; Mukul, M.S. Sand Production Caused by Water Hammer Events: Implications for Shut-In Protocols and Design of Water Injection Wells. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 7–9 February 2018; SPIE: Bellingham, WA, USA, 2018. [Google Scholar]
- Tong, Z.; Yang, Z.; Huang, Q.; Yao, Q. Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition. Energies 2022, 15, 1905. [Google Scholar] [CrossRef]
- Tang, Y.; Ouyang, L.-B. A Dynamic Simulation Study of Water Hammer for Offshore Injection Wells To Provide Operation Guidelines. SPE Prod. Oper. 2010, 25, 509–523. [Google Scholar] [CrossRef]
- Choi, S.K.; Huang, W.-S. Impact of Water Hammer in Deep Sea Water Injection Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011; SPIE: Bellingham, WA, USA, 2011. [Google Scholar]
- Zhang, Q.; Liao, T.; Ding, L.; Wang, K.; Yang, H.; Lian, Z. Study on water hammer effect and tubing string vibration in high-pressure high-production gas wells. Geoenergy Sci. Eng. 2023, 229, 212147. [Google Scholar] [CrossRef]
- Hou, L.; Elsworth, D.; Gong, P.; Bian, X.; Zhang, L. Integration of Real-time Monitoring and Data Analytics to Mitigate Sand Screen-outs during Fracturing Operations. SPE J. 2024; revision. [Google Scholar]
- Novotny, E. Proppant transport. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition, Denver, CO, USA, 9–12 October 1977; SPIE: Bellingham, WA, USA, 1977. [Google Scholar]
- Patankar, N.A.; Joseph, D.; Wang, J.; Barree, R.; Conway, M.; Asadi, M. Power law correlations for sediment transport in pressure driven channel flows. Int. J. Multiph. Flow 2002, 28, 1269–1292. [Google Scholar] [CrossRef]
- Aud, W.; Wright, T.; Cipolla, C.; Harkrider, J. The effect of viscosity on near-wellbore tortuosity and premature screenouts. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 25–28 September 1994; SPIE: Bellingham, WA, USA, 1994. [Google Scholar]
- Dahi-Taleghani, A.; Olson, J.E. Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures. SPE J. 2011, 16, 575–581. [Google Scholar] [CrossRef]
- Hou, L.; Cheng, Y.; Elsworth, D.; Liu, H.; Ren, J. Prediction of the Continuous Probability of Sand Screenout Based on a Deep Learning Workflow. SPE J. 2022, 27, 1520–1530. [Google Scholar] [CrossRef]
- Hou, L.; Elsworth, D.; Zhang, F.; Wang, Z.; Zhang, J. Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models. Energy 2023, 264, 6122. [Google Scholar] [CrossRef]
- Willingham, J.; Tan, H.; Norman, L. Perforation friction pressure of fracturing fluid slurries. In Proceedings of the Low Permeability Reservoirs Symposium, Denver, CO, USA, 26–28 April 1993; SPIE: Bellingham, WA, USA, 1993. [Google Scholar]
- Dontsov, E.V.; Peirce, A.P. Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures. J. Fluid Mech. 2014, 760, 567–590. [Google Scholar] [CrossRef]
- Wang, J.; Joseph, D.D.; Patankar, N.A.; Conway, M.; Barree, R.D. Bi-power law correlations for sediment transport in pressure driven channel flows. Int. J. Multiph. Flow 2003, 29, 475–494. [Google Scholar] [CrossRef]
- Elliott, S.J.; Gale, J.F.W. Analysis and Distribution of Proppant Recovered From Fracture Faces in the HFTS Slant Core Drilled Through a Stimulated Reservoir. In Proceedings of the 6th Unconventional Resources Technology Conference, Houston, TX, USA, 23 July 2018. [Google Scholar]
- Siddhamshetty, P.; Narasingam, A.; Liu, S.; Valkó, P.P.; Kwon, J.S.-I. Feedback control of proppant bank heights during hydraulic fracturing for enhanced productivity in shale formations. In Computer Aided Chemical Engineering; Eden, M.R., Ierapetritou, M.G., Towler, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 44, pp. 703–708. [Google Scholar]
- Hou, L.; Cheng, Y.; Wang, X.; Ren, J.; Geng, X. Effect of slickwater-alternate-slurry injection on proppant transport at field scales: A hybrid approach combining experiments and deep learning. Energy 2022, 242, 2987. [Google Scholar] [CrossRef]
- Nolte, K. A general analysis of fracturing pressure decline with application to three models. SPE Form. Eval. 1986, 1, 571–583. [Google Scholar] [CrossRef]
- Nolte, K. Principles for fracture design based on pressure analysis. SPE Prod. Eng. 1988, 3, 22–30. [Google Scholar] [CrossRef]
- Choon, T.W.; Aik, L.K.; Aik, L.E.; Hin, T.T. Investigation of water hammer effect through pipeline system. Int. J. Adv. Sci. Eng. Inf. Technol. 2012, 2, 246–251. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A review of water hammer theory and practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
- Bergant, A.; Tijsseling, A.S.; Vítkovský, J.P.; Covas, D.I.; Simpson, A.R.; Lambert, M.F. Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools. J. Hydraul. Res. 2008, 46, 373–381. [Google Scholar] [CrossRef]
- Siddique, M.; Alhazmy, M. Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube. Int. J. Refrig. 2008, 31, 234–241. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Y.; Wang, T.; Zhou, L.; Li, Y.; Zhang, M. A Simulation Calculation Method of a Water Hammer with Multpoint Collapsing. Energies 2020, 13, 1103. [Google Scholar] [CrossRef]
- Bo, Z.; Yuncai, M.; Yongjin, Z.; Haige, W. Influence of water hammer effect on the well barrier integrity of shale gas well during SRV and the countermeasures. Oil Drill. Prod. Technol. 2019, 41, 608–613. [Google Scholar]
Original Features | Extracted Features |
---|---|
well depth; vertical depth; | DPP |
minimum horizontal stress; pore pressure | H1 |
stage number; stage length | ƞ |
pump rate; wellhead pressure | ΔP/ΔVf |
fluid viscosity; proppant diameter and concentration | Vs/Vf |
Parameters | Values | Parameters | Values |
---|---|---|---|
Fluid Density (ρ) | 1000 kg/m3 | Diameter of Wellbore (D) | 0.127 m |
Bulk Module of Liquid (K) | 2.2 × 109 Pa | Thickness of Pipe Wall (e) | 0.0123 m |
Elasticity Modulus of Pipe Material (E) | 2.0 × 1011 Pa | Fluid Viscosity (µ) | 0.001 Pa·s |
Well Depth (L) | 3793 m (Case 1); 3782 m (Case 2); 5252 m (Case 3); 4482 m (Case 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Gong, P.; Sun, H.; Zhang, L.; Ren, J.; Cheng, Y. Emergency Pump-Rate Regulation to Mitigate Water-Hammer Effect—An Integrated Data-Driven Strategy and Case Studies. Energies 2024, 17, 1157. https://doi.org/10.3390/en17051157
Hou L, Gong P, Sun H, Zhang L, Ren J, Cheng Y. Emergency Pump-Rate Regulation to Mitigate Water-Hammer Effect—An Integrated Data-Driven Strategy and Case Studies. Energies. 2024; 17(5):1157. https://doi.org/10.3390/en17051157
Chicago/Turabian StyleHou, Lei, Peibin Gong, Hai Sun, Lei Zhang, Jianhua Ren, and Yiyan Cheng. 2024. "Emergency Pump-Rate Regulation to Mitigate Water-Hammer Effect—An Integrated Data-Driven Strategy and Case Studies" Energies 17, no. 5: 1157. https://doi.org/10.3390/en17051157
APA StyleHou, L., Gong, P., Sun, H., Zhang, L., Ren, J., & Cheng, Y. (2024). Emergency Pump-Rate Regulation to Mitigate Water-Hammer Effect—An Integrated Data-Driven Strategy and Case Studies. Energies, 17(5), 1157. https://doi.org/10.3390/en17051157