Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Consortium
2.2. Arundo donax Hydrolysate
2.3. Fermentation Media
2.4. Batch Cultures
2.5. Chemical Analysis
2.6. Nucleic Acids Isolation
2.7. Pyrosequencing of 16S rRNA
2.8. Quantification of Hydrogen-Producing Species by Real-Time PCR
2.9. Clone Library Preparation
2.10. Comparative Sequence Analysis
3. Results
3.1. Batch Cultures
3.2. Taxonomic Composition of the Bacterial Consortia
3.2.1. Pyrosequencing of 16S rRNA Genes
3.2.2. Quantification of Hydrogen-Producing Species by qPCR
3.2.3. Phylogenetic Analysis of hydA Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Research Council and National Academy of Engineering. The Hydrogen Economy: Opportunities, Costs, Barriers, and Needs; The National Academies Press: Washington, DC, USA, 2004; ISBN 978-0-309-09163-3. [Google Scholar]
- Milne, T.A.; Elam, C.C.; Evans, R.J. Hydrogen from Biomass–State of the Art and Research Challenges; International Energy Agency (IEA), National Renewable Energy Laboratory: Golden, CO, USA, 2002. [Google Scholar]
- Kapdan, I.K.; Kargi, F. Bio-Hydrogen Production from Waste Materials. Enzym. Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Ghosh, D. Advances in Fermentative Biohydrogen Production: The Way Forward? Trends Biotechnol. 2009, 27, 287–297. [Google Scholar] [CrossRef]
- Toledo-Alarcón, J.; Capson-Tojo, G.; Marone, A.; Paillet, F.; Júnior, A.D.N.F.; Chatellard, L.; Bernet, N.; Trably, E. Basics of Bio-Hydrogen Production by Dark Fermentation. In Bioreactors for Microbial Biomass and Energy Conversion; Liao, Q., Chang, J., Herrmann, C., Xia, A., Eds.; Springer: Singapore, 2018; pp. 199–220. ISBN 978-981-10-7677-0. [Google Scholar]
- Thauer, R.K.; Jungermann, K.; Decker, K. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriol. Rev. 1977, 41, 100–180. [Google Scholar] [CrossRef] [PubMed]
- Martín del Campo, J.S.; Rollin, J.; Myung, S.; Chun, Y.; Chandrayan, S.; Patiño, R.; Adams, M.W.; Zhang, Y.-H.P. High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System. Angew. Chem. Int. Ed. 2013, 52, 4587–4590. [Google Scholar] [CrossRef]
- Singh, R.; White, D.; Demirel, Y.; Kelly, R.; Noll, K.; Blum, P. Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima. Appl. Environ. Microbiol. 2018, 84, e00998-18. [Google Scholar] [CrossRef]
- Ergal, İ.; Gräf, O.; Hasibar, B.; Steiner, M.; Vukotić, S.; Bochmann, G.; Fuchs, W.; Rittmann, S.K.-M.R. Biohydrogen Production beyond the Thauer Limit by Precision Design of Artificial Microbial Consortia. Commun. Biol. 2020, 3, 443. [Google Scholar] [CrossRef]
- Ergal, İ.; Bochmann, G.; Fuchs, W.; Rittmann, S.K.-M. Design and Engineering of Artificial Microbial Consortia for Biohydrogen Production. Curr. Opin. Biotechnol. 2022, 73, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Bundhoo, M.A.Z.; Mohee, R.; Hassan, M.A. Effects of Pre-Treatment Technologies on Dark Fermentative Biohydrogen Production: A Review. J. Environ. Manag. 2015, 157, 20–48. [Google Scholar] [CrossRef]
- Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L. Bioconversion of Lignocellulosic Biomass to Hydrogen: Potential and Challenges. Biotechnol. Adv. 2009, 27, 1051–1060. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrère, H.; Steyer, J.-P. Hydrogen Production from Agricultural Waste by Dark Fermentation: A Review. Int. J. Hydrogen Energy 2010, 35, 10660–10673. [Google Scholar] [CrossRef]
- Jonsson, L.; Alriksson, B.; Nilvebrant, N.-O. Bioconversion of Lignocellulose: Inhibitors and Detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef]
- Quéméneur, M.; Hamelin, J.; Barakat, A.; Steyer, J.-P.; Carrère, H.; Trably, E. Inhibition of Fermentative Hydrogen Production by Lignocellulose-Derived Compounds in Mixed Cultures. Int. J. Hydrogen Energy 2012, 37, 3150–3159. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J.-P.; Carrère, H. Do Furanic and Phenolic Compounds of Lignocellulosic and Algae Biomass Hydrolyzate Inhibit Anaerobic Mixed Cultures? A Comprehensive Review. Biotechnol. Adv. 2014, 32, 934–951. [Google Scholar] [CrossRef] [PubMed]
- Angelini, L.G.; Ceccarini, L.; Nassi o Di Nasso, N.; Bonari, E. Comparison of Arundo donax L. and Miscanthus x giganteus in a Long-Term Field Experiment in Central Italy: Analysis of Productive Characteristics and Energy Balance. Biomass Bioenergy 2009, 33, 635–643. [Google Scholar] [CrossRef]
- Corno, L.; Pilu, R.; Adani, F. Arundo donax L.: A Non-Food Crop for Bioenergy and Bio-Compound Production. Biotechnol. Adv. 2014, 32, 1535–1549. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.; Costa, J.; Moreira, J.; Cumbane, B.; Abias, M.; Santos, F.; Zanetti, F.; Monti, A.; Fernando, A.L. Switchgrass and Giant Reed Energy Potential When Cultivated in Heavy Metals Contaminated Soils. Energies 2022, 15, 5538. [Google Scholar] [CrossRef]
- Corno, L.; Pilu, R.; Tambone, F.; Scaglia, B.; Adani, F. New Energy Crop Giant Cane (Arundo donax L.) Can Substitute Traditional Energy Crops Increasing Biogas Yield and Reducing Costs. Bioresour. Technol. 2015, 191, 197–204. [Google Scholar] [CrossRef]
- Ge, X.; Xu, F.; Vasco-Correa, J.; Li, Y. Giant Reed: A Competitive Energy Crop in Comparison with Miscanthus. Renew. Sustain. Energy Rev. 2016, 54, 350–362. [Google Scholar] [CrossRef]
- Toscano, G.; Ausiello, A.; Micoli, L.; Zuccaro, G.; Pirozzi, D. Anaerobic Digestion of Residual Lignocellulosic Materials to Biogas and Biohydrogen. Chem. Eng. Trans. 2013, 32, 487–492. [Google Scholar] [CrossRef]
- Toscano, G.; Zuccaro, G.; Ausiello, A.; Micoli, L.; Turco, M.; Pirozzi, D. Production of Hydrogen from Giant Reed by Dark Fermentation. Chem. Eng. Trans. 2014, 37, 331–336. [Google Scholar] [CrossRef]
- Toscano, G.; Zuccaro, G.; Ausiello, A.; Micoli, L.; Turco, M.; Pirozzi, D. Dark Fermentation of Arundo Donax Hydrolysate for Hydrogen Production. In Proceedings of the 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016; pp. 622–626. [Google Scholar] [CrossRef]
- Ausiello, A.; Micoli, L.; Turco, M.; Toscano, G.; Florio, C.; Pirozzi, D. Biohydrogen Production by Dark Fermentation of Arundo donax Using a New Methodology for Selection of H2-Producing Bacteria. Int. J. Hydrogen Energy 2017, 42, 30599–30612. [Google Scholar] [CrossRef]
- Vasmara, C.; Cianchetta, S.; Marchetti, R.; Ceotto, E.; Galletti, S. Hydrogen Production from Enzymatic Hydrolysates of Alkali Pre-Treated Giant Reed (Arundo donax L.). Energies 2022, 15, 4876. [Google Scholar] [CrossRef]
- Vasmara, C.; Galletti, S.; Cianchetta, S.; Ceotto, E. Advancements in Giant Reed (Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review. Energies 2023, 16, 949. [Google Scholar] [CrossRef]
- Adney, B.; Baker, J. Measurement of Cellulase Activities—Laboratory Analytical Procedure (LAP)—Issue Date, 08/12/1996; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Ghose, T.K. Measurement of Cellulase Activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Wood, T.M.; Bhat, K.M. Methods for Measuring Cellulase Activities. In Biomass Part A: Cellulose and Hemicellulose; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1988; Volume 160, pp. 87–112. [Google Scholar]
- Strobel, H.J. Basic Laboratory Culture Methods for Anaerobic Bacteria. In Biofuels; Mielenz, J.R., Ed.; Methods in Molecular Biology; Humana Press, a part of Springer Science + Business Media: Berlin, Germany, 2009; Volume 581, pp. 247–261. ISBN 978-1-60761-213-1. [Google Scholar]
- Walker, M.; Zhang, Y.; Heaven, S.; Banks, C. Potential Errors in the Quantitative Evaluation of Biogas Production in Anaerobic Digestion Processes. Bioresour. Technol. 2009, 100, 6339–6346. [Google Scholar] [CrossRef]
- Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Box, J.D. Investigation of the Folin-Ciocalteau Phenol Reagent for the Determination of Polyphenolic Substances in Natural Waters. Water Res. 1983, 17, 511–525. [Google Scholar] [CrossRef]
- Martinez, A.; Rodriguez, M.E.; York, S.W.; Preston, J.F.; Ingram, L.O. Use of UV Absorbance To Monitor Furans in Dilute Acid Hydrolysates of Biomass. Biotechnol. Prog. 2000, 16, 637–641. [Google Scholar] [CrossRef]
- Barker, S.A.; Somers, P.J. A Spectrophotometric Method for the Determination of Formic Acid in the Periodate Oxidation of Carbohydrates. Carbohydr. Res. 1966, 3, 220–224. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A Flexible Tool for Aligning Sequences to a Template Alignment. Bioinformatics 2010, 26, 266–267. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.-Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and Estimators Linking Individual-Based and Sample-Based Rarefaction, Extrapolation and Comparison of Assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, W.; Strunk, O.; Westram, R.; Richter, L.; Meier, H.; Yadhukumar, A.; Buchner, A.; Lai, T.; Steppi, S.; Jobb, G.; et al. ARB: A Software Environment for Sequence Data. Nucleic Acids Res. 2004, 32, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Nandi, R.; Sengupta, S. Microbial Production of Hydrogen: An Overview. Crit. Rev. Microbiol. 1998, 24, 61–84. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic Metabolism Revisited: Metabolism of Lactic Acid Bacteria in Food Fermentations and Food Spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic Acid Production from Lignocellulose-Derived Sugars Using Lactic Acid Bacteria: Overview and Limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef]
- Moldes, A.B.; Torrado, A.; Converti, A.; Domínguez, J.M. Complete Bioconversion of Hemicellulosic Sugars from Agricultural Residues into Lactic Acid by Lactobacillus pentosus. Appl. Biochem. Biotechnol. 2006, 135, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-H.; Chang, Y.-T.; Chang, Y.-J. Roles of Microorganisms Other than Clostridium and Enterobacter in Anaerobic Fermentative Biohydrogen Production Systems—A Review. Bioresour. Technol. 2011, 102, 8437–8444. [Google Scholar] [CrossRef]
- Jo, J.H.; Jeon, C.O.; Lee, D.S.; Park, J.M. Process Stability and Microbial Community Structure in Anaerobic Hydrogen-Producing Microflora from Food Waste Containing Kimchi. J. Biotechnol. 2007, 131, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Sreela-or, C.; Imai, T.; Plangklang, P.; Reungsang, A. Optimization of Key Factors Affecting Hydrogen Production from Food Waste by Anaerobic Mixed Cultures. Int. J. Hydrogen Energy 2011, 36, 14120–14133. [Google Scholar] [CrossRef]
- Moon, C.; Jang, S.; Yun, Y.-M.; Lee, M.-K.; Kim, D.-H.; Kang, W.-S.; Kwak, S.-S.; Kim, M.-S. Effect of the Accuracy of pH Control on Hydrogen Fermentation. Bioresour. Technol. 2015, 179, 595–601. [Google Scholar] [CrossRef] [PubMed]
Gene Target | Reference Strain | Primer | Sequence (5′–3′) | Expected Amplicon (bp) | Reference |
---|---|---|---|---|---|
16S rRNA | Bacteria | EUB338F | ACT CCT ACG GGA GGC AGC AG | 200 | [21] |
EUB518R | ATT ACC GCG GCT GCT GG | ||||
23S rRNA | Klebsiella sp. | 1507F | AAG GCT GAG GTG TGA TGA CG | 200 | [22] |
1717R | CTA CAC ACC AGC GTG CCT TC | ||||
hydA | Clostridium spp. | L1F | AAA TCA CCA CAA CAA ATA TTT GGT GC | 500 | [23] |
L1R | ACA TCC ACC AGG GCA AGC CAT TAC TTC |
Target | Reference DNA | Range of Standard Curve | |
---|---|---|---|
ng DNA µL−1 | Gene Copies µL−1 | ||
16S rRNA Bacteria | Aliihoeflea sp. Strain 2WW (Acc. Num. AYOD00000000) | 18.5 × 10−6–18.5 × 10−2 | 8.44 × 104–8.44 × 108 |
23S rRNA Klebsiella pneumoniae | clone K7 (Acc. Num. KU985052) | 20.4 × 10−6–20.4 × 10−2 | 1.55 × 104–1.55 × 108 |
hydA of Clostridium spp. | clone AD3–1 | 5.4 × 10−7–5.4 | 1.64 × 102–1.64 × 109 |
Culture Label | H2 Yields (H2 mmol per glucose eq mmol) | Microbial Yields (AU per Glucose eq mmol) |
---|---|---|
TS2 | 1.15 | 2.05 |
TS3 | 1.07 | 1.01 |
AD2 | 0.26 | 0.30 |
AD3 | 0.28 | 0.44 |
AD4 | 0.35 | 0.59 |
Phylum | Class | Order | Family | Genus | TS2 | AD3 | AD4 |
---|---|---|---|---|---|---|---|
Unassigned | Other | Other | Other | Other | 1.30 | 31.56 | 9.04 |
Proteobacteria | Gammaproteobacteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas | 0.00 | 0.00 | 0.01 |
Proteobacteria | Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae | Enterobacter | 41.35 | 0.00 | 0.00 |
Proteobacteria | Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae | Other | 0.20 | 0.00 | 0.00 |
Proteobacteria | Other | Other | Other | Other | 42.87 | 0.00 | 0.01 |
Firmicutes | Clostridia | Clostridiales | Clostridiaceae | Clostridium | 0.01 | 0.21 | 0.32 |
Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Lactococcus | 0.00 | 0.04 | 0.00 |
Firmicutes | Bacilli | Lactobacillales | Lactobacillaceae | Lactobacillus | 14.23 | 62.96 | 87.81 |
Firmicutes | Bacilli | Bacillales | Sporolactobacillaceae | Sporolactobacillus | 0.03 | 0.00 | 0.00 |
Firmicutes | Bacilli | Other | Other | Other | 0.00 | 5.21 | 2.82 |
Bacteroidetes | Bacteroidia | Bacteroidales | Bacteroidaceae | Bacteroides | 0.00 | 0.01 | 0.00 |
Bacteroidetes | Bacteroidia | Bacteroidales | Other | Other | 0.00 | 0.01 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toscano, G.; Zuccaro, G.; Corsini, A.; Zecchin, S.; Cavalca, L. Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium. Energies 2023, 16, 1813. https://doi.org/10.3390/en16041813
Toscano G, Zuccaro G, Corsini A, Zecchin S, Cavalca L. Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium. Energies. 2023; 16(4):1813. https://doi.org/10.3390/en16041813
Chicago/Turabian StyleToscano, Giuseppe, Gaetano Zuccaro, Anna Corsini, Sarah Zecchin, and Lucia Cavalca. 2023. "Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium" Energies 16, no. 4: 1813. https://doi.org/10.3390/en16041813
APA StyleToscano, G., Zuccaro, G., Corsini, A., Zecchin, S., & Cavalca, L. (2023). Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium. Energies, 16(4), 1813. https://doi.org/10.3390/en16041813