Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation
Abstract
:1. Introduction
2. Related Work
3. Proposed AI Framework
4. Constituents of the Proposed AI Framework
4.1. Demand Profiling
4.2. Data Augmentation
4.3. Demand Forecasting
4.4. Demand Explainability
4.5. Charge Optimisation
4.5.1. Optimising Maximum EV Demand
4.5.2. Experiment 1—Optimising maximum EV Demand
4.5.3. Optimising Target EV Demand
4.5.4. Experiment 2— Optimising Target EV Demand
4.5.5. Optimising EV Charge Scheduling
4.5.6. Experiment 3—Optimising EV Charge Scheduling
4.6. Results Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I.; et al. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Jackson, R.; Friedlingstein, P.; Andrew, R.; Canadell, J.; Le Quéré, C.; Peters, G. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environ. Res. Lett. 2019, 14, 121001. [Google Scholar] [CrossRef] [Green Version]
- Santos, G. Road transport and CO2 emissions: What are the challenges? Transp. Policy 2017, 59, 71–74. [Google Scholar] [CrossRef]
- Kong, P.Y.; Karagiannidis, G.K. Charging schemes for plug-in hybrid electric vehicles in smart grid: A survey. IEEE Access 2016, 4, 6846–6875. [Google Scholar] [CrossRef]
- Moore, J.; Bullard, N.; Officer, C.C. BNEF Executive Factbook 2021. Available online: https://about.bnef.com/blog/bloombergnef-2021-executive-factbook/ (accessed on 1 December 2022).
- Muratori, M.; Alexander, M.; Arent, D.; Bazilian, M.; Cazzola, P.; Dede, E.M.; Farrell, J.; Gearhart, C.; Greene, D.; Jenn, A.; et al. The rise of electric vehicles—2020 status and future expectations. Prog. Energy 2021, 3, 022002. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A review on electric vehicles: Technologies and challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the art and trends in electric and hybrid electric vehicles. Proc. IEEE 2021, 109, 967–984. [Google Scholar] [CrossRef]
- Delanote, J.; Ferrazzi, M.; Hanzl-Weiß, D.; Kolev, A.; Locci, A.; Petti, S.; Rückert, D.; Schanz, J.; Slacik, T.; Stanimirovic, M.; et al. Recharging the Batteries: How the Electric Vehicle Revolution Is Affecting Central, Eastern and South-Eastern Europe. 2022. Available online: https://www.eib.org/attachments/publications/econ_recharging_the_batteries_en.pdf (accessed on 1 December 2022).
- Smart Cities Plan. 2021. Available online: https://consult.industry.gov.au/national-electric-vehicle-strategy (accessed on 1 December 2022).
- Brown, A.; Schayowitz, A.; White, E. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Fourth Quarter 2021; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2022.
- Wu, Q. Grid Integration of Electric Vehicles in Open Electricity Markets; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Rigas, E.S.; Ramchurn, S.D.; Bassiliades, N. Managing electric vehicles in the smart grid using artificial intelligence: A survey. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1619–1635. [Google Scholar] [CrossRef]
- Wang, Z.; Ogbodo, M.; Huang, H.; Qiu, C.; Hisada, M.; Abdallah, A.B. AEBIS: AI-enabled blockchain-based electric vehicle integration system for power management in smart grid platform. IEEE Access 2020, 8, 226409–226421. [Google Scholar] [CrossRef]
- Paret, P.; Finegan, D.; Narumanchi, S. Artificial Intelligence for Power Electronics in Electric Vehicles: Challenges and Opportunities. J. Electron. Packag. 2022, 145, 034501. [Google Scholar] [CrossRef]
- Ahmed, M.; Zheng, Y.; Amine, A.; Fathiannasab, H.; Chen, Z. The role of artificial intelligence in the mass adoption of electric vehicles. Joule 2021, 5, 2296–2322. [Google Scholar] [CrossRef]
- Nallaperuma, D.; De Silva, D.; Alahakoon, D.; Yu, X. Intelligent detection of driver behavior changes for effective coordination between autonomous and human driven vehicles. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 3120–3125. [Google Scholar]
- Bandaragoda, T.; Adikari, A.; Nawaratne, R.; Nallaperuma, D.; Luhach, A.K.; Kempitiya, T.; Nguyen, S.; Alahakoon, D.; De Silva, D.; Chilamkurti, N. Artificial intelligence based commuter behaviour profiling framework using Internet of things for real-time decision-making. Neural Comput. Appl. 2020, 32, 16057–16071. [Google Scholar] [CrossRef]
- Nawaratne, R.; Bandaragoda, T.; Adikari, A.; Alahakoon, D.; De Silva, D.; Yu, X. Incremental knowledge acquisition and self-learning for autonomous video surveillance. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 4790–4795. [Google Scholar]
- Kempitiya, T.; Sierla, S.; De Silva, D.; Yli-Ojanperä, M.; Alahakoon, D.; Vyatkin, V. An Artificial Intelligence framework for bidding optimization with uncertainty in multiple frequency reserve markets. Appl. Energy 2020, 280, 115918. [Google Scholar] [CrossRef]
- Zhu, F.; Lv, Y.; Chen, Y.; Wang, X.; Xiong, G.; Wang, F.Y. Parallel transportation systems: Toward IoT-enabled smart urban traffic control and management. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4063–4071. [Google Scholar] [CrossRef]
- Najafi, A.; Pourakbari-Kasmaei, M.; Jasinski, M.; Lehtonen, M.; Leonowicz, Z. A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities. Appl. Energy 2021, 304, 117708. [Google Scholar] [CrossRef]
- Fotouhi, Z.; Hashemi, M.R.; Narimani, H.; Bayram, I.S. A General Model for EV Drivers’ Charging Behavior. IEEE Trans. Veh. Technol. 2019, 68, 7368–7382. [Google Scholar] [CrossRef] [Green Version]
- Quirós-Tortós, J.; Ochoa, L.F.; Lees, B. A statistical analysis of EV charging behavior in the UK. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 445–449. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Tang, S.; Li, C.; Zhang, P.; Tan, Y.; Zhang, Z.; Li, J. An Optimized EV Charging Model Considering TOU Price and SOC Curve. IEEE Trans. Smart Grid 2012, 3, 388–393. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Q.; Huang, S.; Wang, L.; Shahidehpour, M.; Xue, Y. Optimal Day-Ahead Charging Scheduling of Electric Vehicles Through an Aggregative Game Model. IEEE Trans. Smart Grid 2018, 9, 5173–5184. [Google Scholar] [CrossRef] [Green Version]
- González Vayá, M.; Andersson, G. Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead Electricity Markets Under Uncertainty. IEEE Trans. Power Syst. 2015, 30, 2375–2385. [Google Scholar] [CrossRef]
- Vandael, S.; Claessens, B.; Ernst, D.; Holvoet, T.; Deconinck, G. Reinforcement Learning of Heuristic EV Fleet Charging in a Day-Ahead Electricity Market. IEEE Trans. Smart Grid 2015, 6, 1795–1805. [Google Scholar] [CrossRef] [Green Version]
- Kristoffersen, T.K.; Capion, K.; Meibom, P. Optimal charging of electric drive vehicles in a market environment. Appl. Energy 2011, 88, 1940–1948. [Google Scholar] [CrossRef]
- Lee, Z.J.; Li, T.; Low, S.H. ACN-Data: Analysis and Applications of an Open EV Charging Dataset. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, New York, NY, USA, 25–28 June 2019. [Google Scholar] [CrossRef]
- Osipov, E.; Kahawala, S.; Haputhanthri, D.; Kempitiya, T.; Silva, D.D.; Alahakoon, D.; Kleyko, D. Hyperseed: Unsupervised Learning With Vector Symbolic Architectures. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Steinstraeter, M.; Heinrich, T.; Lienkamp, M. Effect of Low Temperature on Electric Vehicle Range. World Electr. Veh. J. 2021, 12, 115. [Google Scholar] [CrossRef]
- State of Electric Vehicles. Electric Vehicle Council (Australia)—March 2022. Available online: https://electricvehiclecouncil.com.au/state-of-evs-october2022/ (accessed on 1 November 2022).
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10. [Google Scholar]
- Klaus, S. The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function: Part 1: Convergence analysis. Numer. Math. 1982, 38, 83–114. [Google Scholar]
- Moraliyage, H.; Mills, N.; Rathnayake, P.; De Silva, D.; Jennings, A. UNICON: An Open Dataset of Electricity, Gas and Water Consumption in a Large Multi-Campus University Setting. In Proceedings of the 2022 15th International Conference on Human System Interaction (HSI), Melbourne, Australia, 28–31 July 2022; pp. 1–8. [Google Scholar]
- Wimalaratne, S.; Haputhanthri, D.; Kahawala, S.; Gamage, G.; Alahakoon, D.; Jennings, A. UNISOLAR: An Open Dataset of Photovoltaic Solar Energy Generation in a Large Multi-Campus University Setting. In Proceedings of the 2022 15th International Conference on Human System Interaction (HSI), Melbourne, Australia, 28–31 July 2022; pp. 1–5. [Google Scholar]
Field | Description |
---|---|
connectionTime | Time the user plugs in |
doneChargingTime | Time the charging finishes |
disconnectTime | Time the user unplugs |
kWhDelivered | Measured energy delivered |
sessionID | Unique ID for the charging session |
timezone | Time-zone of the charging station |
userID * | Unique identifier for the user |
WhPerMile *† | EV specific energy demand in miles |
kWhRequested *† | Requested energy |
requestedDeparture *† | Requested departure time |
Statistical Parameter | Value (kWh) |
---|---|
Mean | 483.8 |
Standard deviation | 419.5 |
Minimum value | 2.09 |
Quartile 1 | 75.3 |
Quartile 2 | 379.1 |
Quartile 3 | 937.1 |
Maximum value | 1300.67 |
Regression Algorithm | Model | RMSE | MAE | COD |
---|---|---|---|---|
XGBoost | Model A | 102.345 | 62.260 | 94.304 |
Model B | 101.071 | 61.664 | 94.445 | |
- Morning model | 13.091 | 7.103 | 62.159 | |
- Evening model | 100.077 | 60.234 | 94.241 | |
AdaBoost | Model A | 169.534 | 143.639 | 84.371 |
Model B | 159.059 | 132.124 | 86.243 | |
- Morning model | 15.789 | 13.150 | 44.951 | |
- Evening model | 154.089 | 127.011 | 86.348 | |
Linear regressor | Model A | 176.949 | 143.401 | 82.974 |
Model B | 177.766 | 143.711 | 82.816 | |
- Morning model | 12.070 | 7.717 | 67.827 | |
- Evening model | 174.204 | 141.906 | 82.551 | |
Multilayer perceptron | Model A | 107.808 | 72.616 | 93.680 |
Model B | 96.753 | 65.096 | 94.910 | |
- Morning model | 11.893 | 7.229 | 68.764 | |
- Evening model | 94.902 | 63.299 | 94.822 | |
Random forest | Model A | 98.827 | 57.571 | 94.689 |
Model B | 102.095 | 59.676 | 94.332 | |
- Morning model | 12.740 | 6.547 | 64.157 | |
- Evening model | 101.874 | 58.150 | 94.033 | |
Support vector regression | Model A | 202.890 | 153.976 | 77.616 |
Model B | 202.509 | 153.223 | 77.700 | |
- Morning model | 13.053 | 7.771 | 62.377 | |
- Evening model | 199.306 | 149.782 | 77.160 |
EV-ID | Charge Amount | Start Time | End Time |
---|---|---|---|
1 | 35 | 12:00 pm | 09:00 pm |
2 | 40 | 12:00 am | 07:00 am |
3 | 37 | 11:00 am | 06:00 pm |
4 | 15 | 07:00 am | 12:00 pm |
5 | 32 | 03:00 am | 12:00 pm |
EV-ID | Charge Amount | Start Time | End Time |
---|---|---|---|
1 | 33.4 | 12:00 pm | 07:00 pm |
2 | 38.4 | 01:00 am | 06:00 am |
3 | 36.7 | 12:00 pm | 05:00 pm |
4 | 15.0 | 07:00 am | 12:00 pm |
5 | 32.0 | 03:00 am | 12:00 pm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumanasena, V.; Gunasekara, L.; Kahawala, S.; Mills, N.; De Silva, D.; Jalili, M.; Sierla, S.; Jennings, A. Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation. Energies 2023, 16, 2245. https://doi.org/10.3390/en16052245
Sumanasena V, Gunasekara L, Kahawala S, Mills N, De Silva D, Jalili M, Sierla S, Jennings A. Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation. Energies. 2023; 16(5):2245. https://doi.org/10.3390/en16052245
Chicago/Turabian StyleSumanasena, Vidura, Lakshitha Gunasekara, Sachin Kahawala, Nishan Mills, Daswin De Silva, Mahdi Jalili, Seppo Sierla, and Andrew Jennings. 2023. "Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation" Energies 16, no. 5: 2245. https://doi.org/10.3390/en16052245
APA StyleSumanasena, V., Gunasekara, L., Kahawala, S., Mills, N., De Silva, D., Jalili, M., Sierla, S., & Jennings, A. (2023). Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation. Energies, 16(5), 2245. https://doi.org/10.3390/en16052245