Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique
Abstract
:1. Introduction
2. Related Works
3. Mathematical Model
3.1. Fitness Function
- is the series conductance of the line between buses k and j for ;
- is the voltage magnitude at bus k;
- is the voltage magnitude at bus j;is the angular difference between the voltage phasors of buses and for .
3.2. Constraints
- is the active power supplied by the substation to bus k;
- is the active power demand of bus k;
- is the set of the system’s buses;
- is the set of buses connected to bus k;
- is the active power dissipated in the branch between buses k and j, given by (4).
- is the series susceptance of the line between buses k and j.
- is the reactive power supplied to bus k;
- is the reactive power demand of bus k;
- is the reactive power dissipated in the branch between buses k and j, given by (6).
4. Proposed Method
4.1. The Branch Exchange Heuristics
4.2. The Iterative Branch Exchange
Algorithm 1 Iterative Branch Exchange |
|
4.3. Fitness Evaluation
4.4. BE Application Sequence and Cycle Clusters
5. Simulation and Results
5.1. Presentation of the Benchmark Systems
5.2. Overall Numerical Results for Benchmark Systems
5.3. Numerical Results—BE Application Order
5.4. Numerical Results—Cycle Cluster
6. Case Studies: CEMIG-D Real Feeders
- is the total number of switches ();
- is the number of NO switches;
- is the number of NC switches.
6.1. Case Study no. 1: PSAU13 Feeder (Pouso Alegre City)
6.2. Case Study No. 2: IIGD Substation (Ipatinga City)
6.3. Case Study No. 3: IIGU115 Feeder (Belo Oriente City/MG)
6.4. Case Study No. 4: CETU Substation (Caeté City/MG)
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, S.; Das, D.; Paul, S. A comprehensive review on power distribution network reconfiguration. Energy Syst. 2017, 8, 227–284. [Google Scholar] [CrossRef]
- Ababei, C.; Kavasseri, R. Efficient network reconfiguration using minimum cost maximum flow-based branch exchanges and random walks-based loss estimations. IEEE Trans. Power Syst. 2011, 26, 30–37. [Google Scholar] [CrossRef]
- Raju, G.K.V.; Bijwe, P.R. An efficient algorithm for minimum loss reconfiguration of distribution system based on sensitivity and heuristics. IEEE Trans. Power Syst. 2008, 23, 1280–1287. [Google Scholar] [CrossRef]
- Zin, A.A.M.; Ferdavani, A.K.; Bin Khairuddin, A.; Naeini, M.M. Two circular-updating hybrid heuristic methods for minimum-loss reconfiguration of electrical distribution network. IEEE Trans. Power Syst. 2013, 28, 1318–1323. [Google Scholar] [CrossRef]
- Shaheen, A.; El-Sehiemy, R.; Kamel, S.; Selim, A. Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm. Energies 2022, 15, 6994. [Google Scholar] [CrossRef]
- Barbosa, C.H.N.D.R.; Alexandre, R.F.; de Vasconcelos, J.A. A practical codification and its analysis for the generalized reconfiguration problem. Electr. Power Syst. Res. 2013, 97, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Alanazi, A.; Alanazi, M. Artificial Electric Field Algorithm-Pattern Search for Many-Criteria Networks Reconfiguration Considering Power Quality and Energy Not Supplied. Energies 2022, 15, 5269. [Google Scholar] [CrossRef]
- TRACTEBEL. Identifying Energy Efficiency Improvements and Saving Potential in Energy Networks, Including Analysis of the Value of Demand Response; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Beza, T.M.; Huang, Y.C.; Kuo, C.C. A hybrid optimization approach for power loss reduction and dg penetration level increment in electrical distribution network. Energies 2020, 13, 6008. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z. Multi-Objective Network Reconfiguration Considering v2g of Electric Vehicles in Distribution System with Renewable Energy. Energy Procedia 2019, 158, 278–283. [Google Scholar] [CrossRef]
- Alwash, S.; Ibrahim, S.; Abed, A.M. Distribution System Reconfiguration with Soft Open Point for Power Loss Reduction in Distribution Systems Based on Hybrid Water Cycle Algorithm. Energies 2023, 16, 199. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Du, Y.; Zhang, W.; Yang, T.; Qiu, J. Islanding and dynamic reconfiguration for resilience enhancement of active distribution systems. Electr. Power Syst. Res. 2020, 189, 106749. [Google Scholar] [CrossRef]
- Gharebaghi, S.; Izadi, M.; Safdarian, A. Optimal Network Configuration Considering Network Losses and Service Reliability. In Proceedings of the 2017 Smart Grid Conference (SGC), Tehran, Iran, 20–21 December 2017. [Google Scholar]
- Tranberg, B.; Corradi, O.; Lajoie, B.; Gibon, T.; Staffell, I.; Andresen, G.B. Real-Time Carbon Accounting Method for the European Electricity Markets. Energy Strategy Rev. 2019, 26, 100367. [Google Scholar] [CrossRef]
- Kumar, K.K.; Ramana, N.V.; Kamakshaiah, S.; Nishanth, P.M. State of art for network reconfiguration methodologies of distribution system. J. Theor. Appl. Inf. Technol. 2013, 57, 25–40. [Google Scholar]
- Civanlar, S.; Grainger, J.J.; Yin, H.; Lee, S.S.H. Distribution Feeder Reconfiguration for Loss Reduction. IEEE Trans. Power Deliv. 1988, 3, 1217–1223. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407. [Google Scholar] [CrossRef]
- Merlin, A.; Back, H. Search for a Minimal—Loss Operating Spanning Tree Configuration in an Urban Power Distribution System. In Proceedings of the 5th Power System Conference, London, UK, 1–5 September 1975. [Google Scholar]
- Zhu, J.Z. Optimal reconfiguration of electrical distribution network using the refined genetic algorithm. Electr. Power Syst. Res. 2002, 62, 37–42. [Google Scholar] [CrossRef]
- Shirmohammadi, D.; Hong, H.W. Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Trans. Power Deliv. 1989, 4, 1492–1498. [Google Scholar] [CrossRef]
- McDermott, T.E.; Drezga, I.; Broadwater, R.P. A Heuristic Nonlinear Constructive Method. IEEE Trans. Power Syst. 1999, 14, 478–483. [Google Scholar] [CrossRef]
- de Macedo Braz, H.D.; de Souza, B.A. Distribution network reconfiguration using genetic algorithms with sequential encoding: Subtractive and additive approaches. IEEE Trans. Power Syst. 2011, 26, 582–593. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y. Determination of power distribution network configuration using non-revisiting genetic algorithm. IEEE Trans. Power Syst. 2013, 28, 3638–3648. [Google Scholar] [CrossRef]
- Tiguercha, A.; Ladjici, A.A.; Boudour, M. Optimal Radial Distribution Network Reconfiguration Based on Multi Objective Differential Evolution Algorithm. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017. [Google Scholar] [CrossRef]
- Pegado, R.; Ñaupari, Z.; Molina, Y.; Castillo, C. Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electr. Power Syst. Res. 2019, 169, 206–213. [Google Scholar] [CrossRef]
- Alonso, G.; Alonso, R.; de Souza, A.C.Z.Z.; Freitas, W. Enhanced Artificial Immune Systems and Fuzzy Logic for Active Distribution Systems Reconfiguration. Energies 2022, 15, 9419. [Google Scholar] [CrossRef]
- Carreño, E.M.; Romero, R.; Padilha-Feltrin, A. An efficient codification to solve distribution network reconfiguration for loss reduction problem. IEEE Trans. Power Syst. 2008, 23, 1542–1551. [Google Scholar] [CrossRef]
- Queiroz, L.M.O.; Lyra, C. Adaptive hybrid genetic algorithm for technical loss reduction in distribution networks under variable demands. IEEE Trans. Power Syst. 2009, 24, 445–453. [Google Scholar] [CrossRef]
- Gupta, N.; Swarnkar, A.; Niazi, K.R. A Modified Branch-Exchange Heuristic Algorithm for Large-Scale Distribution Networks Reconfiguration. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Zin, A.A.M.; Ferdavani, A.K.; Bin Khairuddin, A.; Naeini, M.M. Reconfiguration of radial electrical distribution network through minimum-current circular-updating-mechanism method. IEEE Trans. Power Syst. 2012, 27, 968–974. [Google Scholar] [CrossRef]
- Souza, S.S.F.; Romero, R.; Pereira, J.; Saraiva, J.T. Reconfiguration of Radial Distribution Systems with Variable Demands Using the Clonal Selection Algorithm and the Specialized Genetic Algorithm of Chu-Beasley. J. Control Autom. Electr. Syst. 2016, 27, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Souza, S.S.F.; Romero, R.; Pereira, J.; Saraiva, J.T. Artificial immune algorithm applied to distribution system reconfiguration with variable demand. Int. J. Electr. Power Energy Syst. 2016, 82, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Salazar, H.; Gallego, R.; Romero, R. Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems. IEEE Trans. Power Deliv. 2006, 21, 1735–1742. [Google Scholar] [CrossRef]
- Fathabadi, H. Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (dFCM) clustering based ANN approach. Int. J. Electr. Power Energy Syst. 2016, 78, 96–107. [Google Scholar] [CrossRef]
- Cao, H.; Gao, C.; Chen, P.; He, X.; Dong, Z.; Lin, L. Distribution Network Dynamic Reconfiguration Based on Improved Fuzzy C-Means Clustering with Time Series Analysis. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 174–182. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, X.; Zhang, Y.; Yin, Z.; Yang, M.; Han, X. Three-phase symmetric distribution network fast dynamic reconfiguration based on timing-constrained hierarchical clustering algorithm. Symmetry 2021, 13, 1479. [Google Scholar] [CrossRef]
- Ahmadi, H.; Martí, J.R. Minimum-loss network reconfiguration: A minimum spanning tree problem. Sustain. Energy Grids Netw. 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Macedo, L.H.; Franco, J.F.; Mahdavi, M.; Romero, R. A Contribution to the Optimization of the Reconfiguration Problem in Radial Distribution Systems. J. Control Autom. Electr. Syst. 2018, 29, 756–768. [Google Scholar] [CrossRef]
- Jakus, D.; Čađenović, R.; Vasilj, J.; Sarajčev, P. Optimal reconfiguration of distribution networks using hybrid heuristic-genetic algorithm. Energies 2020, 13, 1544. [Google Scholar] [CrossRef] [Green Version]
- Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing radiality constraints in distribution system optimization problems. IEEE Trans. Power Syst. 2012, 27, 172–180. [Google Scholar] [CrossRef]
- ANEEL. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional—PRODIST—Módulo 8—Qualidade da Energia Elétrica; Agência Nacional de Energia Elétrica: Brasília, Brazil, 2018.
- Gaspar, W.A.; de Oliveira, E.J.; Garcia, P.A.N.; Amaral, M.B.D. Static Load Model Adjustment using Fuzzy Logic and Differential Evolution. In Proceedings of the 2012 10th IEEE/IAS International Conference on Industry Applications, INDUSCON 2012, Fortaleza, Brazil, 5–7 November 2012. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Murillo-Sanchez, C.E.; Thomas, R.J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19. [Google Scholar] [CrossRef] [Green Version]
- EPRI. Simulation Tool—OpenDSS. 2023. Available online: https://www.epri.com/pages/sa/opendss?lang=en (accessed on 17 February 2023).
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, J.; López, R.; Morales, D.; López, E.; Dessante, P.; Moraga, R. Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: Real application. IEEE Trans. Power Syst. 2006, 21, 948–954. [Google Scholar] [CrossRef]
- Shirmohammadi, D.; Hong, H.W.; Semlyen, A.; Luo, G.X. A Compensation-based Power Flow Method for Weakly Meshed Distribution and Transmission Networks. IEEE Trans. Power Syst. 1988, 3, 753–762. [Google Scholar] [CrossRef]
- Rocha, C.; Radatz, P. Algoritmo de Fluxo de Potência do OpenDSS. Electr. Power Syst. Res. 2017, 1–24. [Google Scholar]
- Huang, Y.-C. Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration. IEEE Proc. Gener. Transm. Distrib. 2002, 149, 615–620. [Google Scholar] [CrossRef]
- Su, C.-T.; Lee, C.-S. Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans. Power Deliv. 2003, 18, 1022–1027. [Google Scholar] [CrossRef]
- Mantovani, J.R.S.; Casari, F.; Romero, R.A. Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão. SBA Controle Autom. 2000, 11, 150–159. [Google Scholar]
- ANEEL. PRODIST—Módulo 7—Cálculo de Perdas na Distribuição; Agência Nacional de Energia Elétrica: Brasília, Brazil, 2015.
Benchmark Network | 33-Bus | 70-Bus | 84-Bus | 136-Bus |
---|---|---|---|---|
No. works reporting NPF | 13 | 3 | 9 | 4 |
No. works reporting RT | 32 | 14 | 18 | 12 |
No. cited works | 66 | 27 | 29 | 21 |
Tie Switch No. | Branch No. | Branch No. | Cluster No. |
---|---|---|---|
s141 | 85 | 39 | 1 |
s142 | 85 | 39 | 1 |
s143 | 99 | 39 | 2 |
s153 | 99 | 39 | 2 |
s147 | 99 | 85 | 3 |
s149 | 99 | 85 | 3 |
s150 | 99 | 85 | 3 |
s152 | 99 | 85 | 3 |
s145 | 121 | 75 | 4 |
s146 | 121 | 75 | 4 |
s154 | 121 | 75 | 4 |
s155 | 121 | 75 | 4 |
s148 | 121 | 85 | 5 |
s151 | 121 | 85 | 5 |
s156 | 121 | 85 | 5 |
Benchmark Network | 33-Bus | 70-Bus * | 84-Bus | 136-Bus |
---|---|---|---|---|
No. lines/tie switches | 37 | 74 | 96 | 156 |
No. generators/feeders | 1 | 1 | 11 | 8 |
No. NO switches (cycles) | 5 | 5 | 13 | 21 |
Voltage level (kV) | 11 | 12.66 | 11.4 | 13.8 |
Active load (MW) | 3.7 | 3.8 | 28.3 | 18.31 |
Reactive load (MVAr) | 2.3 | 2.7 | 20.7 | 7.93 |
Original losses (kW) | 202.69 | 225.00 | 531.99 | 320.36 |
Optimal losses (kW) | 139.55 | 99.66 | 469.88 | 280.19 |
No. Spanning trees | 50,751 | 28,984 | 3.52 × 1011 | 2.27 × 1018 |
References | [19] | [49] | [50] | [51] |
Benchmark Network | 33-Bus | 70-Bus | 84-Bus | 136-Bus |
---|---|---|---|---|
Initial Pop. Size | 1 | 1 | 1 | 1 |
Max Pop. Size | 1 | 5 | 10 | 10 |
No. Generations | 5 | 5 | 5 | 5 |
Work/Year | Methodology/Algorithm | 33-Bus | 70-Bus | 84-Bus | 136-Bus |
---|---|---|---|---|---|
Carreño et al. [27]/2008 | Chu–Beasley GA | 24 | - | 291 | 600 |
Raju and Bijwe [3]/2008 | Sensitivity/BE | 11 | - | 24 | - |
Braz and Souza [22]/2011 | GA | 252 | 3283 | - | - |
Gupta et al. [29]/2012 | Loops Ranking/BE/close-all | - | 14 | 32 | 54 (1) |
Zin et al. [30]/2012 | Minimum Branch Current/BE | 9 | 17 | - (2) | 99 |
Wang and Gao [23]/2013 | Non-revisiting GA | 482 | 539 | 1380 | - |
Zin et al. [4]/2013 (3) | Minimum Branch Current/BE | 20/24 | 30/33 | 65/61 | -(3)/142 |
Souza et al. [31]/2016 (4) | CLONALG/Chu–Beasley GA | 71.5 | - | 185.0 | 808.5 |
Souza et al. [32]/2016 (4) | Opt-aiNet | 71.5 | - | 168.5 | 841.5 |
Pegado et al. [25]/2019 (5) | IS-BPSO (6) | 900.0 | - | 3600.0 | - |
Alonso et al. [26]/2022 (4) | Enhanced Artificial Immune System | 132.0 | - | 232.0 | 1550.0 |
This work | Iterative BE | 24.0 | 26.0 | 64.6 | 146.1 |
BE Sequence | 33-Bus | 70-Bus | 84-Bus |
---|---|---|---|
(1) largest cycles first | 24.0 | 26.0 | 83.0 |
(2) random cycle order | 25.2 | 38.6 | 64.6 |
Setup No. 2 Random Cycle Order | Setup No. 3 Cycle Clustering | |
---|---|---|
Max Pop. Size | 50 | 10 |
No. Generations | 50 | 5 |
NPF in ten runs | 1091.9 | 146.1 |
No. successes in ten runs | 2 | 10 |
Feeder /Sub. | No. NO sw. | No. NC sw. | Combination , | No. Buses | No. MV Clients | No. LV Clients | No. Transformers | MV Network (km) |
---|---|---|---|---|---|---|---|---|
PSAU13 | 9 | 129 | 3.83 × 1013 | 18,445 | 6 | 12,434 | 1029 | 282.43 |
IIGD | 58 | 439 | 3.27 × 1076 | 43,048 | 62 | 54,564 | 968 | 184.28 |
IIGU115 | 14 | 124 | 5.27 × 1018 | 18,523 | 6 | 13,269 | 731 | 270.20 |
CETU | 23 | 318 | 6.15 × 1034 | 31,280 | 22 | 19,042 | 1509 | 636.97 |
Energy (MWh/Month) | Voltage Level NC sw. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Feeder /Sub. | No. PF Runs | From Sub. | Losses Before | Losses After | Losses Red. | Losses Red. (%) | (USD/Month) (1) | After (kV) | Before (kV) | Volt. Inc. (%) |
PSAU13 | 26 | 2201 | 138.1 | 131.6 | 6.5 | 4.7 | 325 | 8.101 | 8.038 | 0.78 |
IIGD | 158 | 14,842 | 554.5 | 550.4 | 4.1 | 0.8 | 205 | 8.217 | 8.166 | 0.63 |
IIGU115 (2) | 24 | 2354 | 285.2 | 280.5 | 4.7 | 1.6 | - | 8.292 | 8.161 | −1.58 |
CETU | 64 | 5197 | 236.8 | 224.4 | 12.4 | 5.3 | 620 | 8.177 | 7.921 | 3.23 |
Sw. no. 48676 | Voltage level before maneuver (p.u.): 1.041 |
Sw. no. 130817 | Voltage level after maneuver (p.u.): 1.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, E.C.; Barbosa, C.H.N.R.; Vasconcelos, J.A. Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique. Energies 2023, 16, 2395. https://doi.org/10.3390/en16052395
Pereira EC, Barbosa CHNR, Vasconcelos JA. Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique. Energies. 2023; 16(5):2395. https://doi.org/10.3390/en16052395
Chicago/Turabian StylePereira, Ezequiel C., Carlos H. N. R. Barbosa, and João A. Vasconcelos. 2023. "Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique" Energies 16, no. 5: 2395. https://doi.org/10.3390/en16052395
APA StylePereira, E. C., Barbosa, C. H. N. R., & Vasconcelos, J. A. (2023). Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique. Energies, 16(5), 2395. https://doi.org/10.3390/en16052395