Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potential Second-Life Applications
2.2. Most Promising Second-Life Applications
- Maximum charge rate. This criterion directly influences the charging time, which is a crucial aspect for certain applications (e.g., EVs). When the charging rate is too high, this leads to lithium plating, capacity and power fade, faster ageing and, in the worst case, thermal runaway [63,64,65,66,67,68].
- Required capacity. This criterion is relevant for both practical feasibility and safety reasons. On the one hand, it is inconvenient to use batteries for applications where the required capacity is less than that provided by a single module or even a single cell [69,70]. On the other hand, it is complicated to have a sufficient number of SLBs to meet the demands of applications where the overall capacity required is very high [41]. Furthermore, the safety issues (and consequent maintenance costs) associated with high energy densities confined to a geographically limited area must also be taken into account [41].
- Operating and storage temperature. Temperature is a major concern in terms of safety. There is a temperature safety window (25 °C–35 °C) in which the battery is intended to operate [75]. A battery that is thermally abused by elevated temperatures is subject to the decomposition of active material and, in the worst case, exothermic reaction and thermal runaway [63,64,76,77]. If, on the other hand, temperatures are too low, there is a decrease in the reaction rate, metallic lithium depositing, irreversible capacity loss and an increased risk of internal short-circuit [63,64,76,78]. The temperature depends not only on the battery and the cooling system but also on the surrounding environment.
- Applicable BM patterns. The 55 highly successful field-proven BM patterns published by Gassmann et al. [79] have been taken as a basis to build up consecutive analyses and trains of thought. A promising BM pattern in terms of second-life applications can either lead to a successful BM or can be combined with other promising BM patterns into a bundle forming a prosperous BM.
- Legal knock-out criteria. The legal assessment (analysing the thematically pertinent legal texts and case law including broad comprehensive research of the legal literature on European and Austrian/German national level to identify potential problems) was carried out to find possible knock-out criteria that would make certain applications unfeasible.
3. Results
3.1. Potential Second-Life Applications
3.2. Most Promising Second-Life Applications
4. Discussion
4.1. Validation
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- What other possible second-life applications, apart from the already mentioned ones, could be interesting?
Appendix B
Application | Reference |
---|---|
Forklift | Hyster E60XNL |
Pallet truck | Jungheinrich EJE M15 |
AGV | KUKA KMP 1500 |
Golf cart | ClubCar Onward® 2 Passenger |
On-grid buffer storage at charging station | HPC-Booster–StoraXe |
Commercial ESS with peak shaving purposes | [41,111] |
Industrial ESS with peak shaving purposes | [41,111] |
Industrial ESS with renewable firming purposes | [41,111] |
Appendix C
Evaluation Scoring | Discharging [C-Rate] | Charging [C-Rate] |
---|---|---|
++ | 0 < x < 0.5 | 0 < x < 1 |
+ | 0.5 < x < 1 | 1 < x < 2 |
o | 1 < x < 2 | 2 < x < 3 |
- | 2 < x < 3 | 3 < x < 5 |
-- | 3 < x < 5 | 5 < x < 8 |
x | x > 5 | x > 8 |
Evaluation Scoring | Required Capacity |
---|---|
++ | 2 kWh < capacity < 100 kWh |
+ | 100 kWh < capacity < 1 MWh |
o | 1 MWh < capacity < 10 MWh |
- | 10 MWh < capacity < 50 MWh 0.2 kWh < capacity < 2 kWh |
-- | 50 MWh < capacity < 100 MWh 0 kWh < capacity < 0.2 kWh |
x | capacity > 100 MWh |
Evaluation Scoring | Operating and Storage Temperature Range [°C] |
---|---|
++ | 20 < temperature < 30 |
+ | 15 < temperature < 35 |
o | 0 < temperature < 50 |
- | −10 < temperature < 60 |
-- | −30 < temperature < 80 |
x | temperature ≤ −30 or temperature ≥ 80 |
Evaluation Scoring | Operating and Storage Temperature Range [°C] |
---|---|
++ | Stationary |
+ | Mobile |
Evaluation Scoring | Number of Promising BM Patterns |
---|---|
++ | BM patterns ≥ 10 |
+ | 7 ≤ BM patterns <10 |
o | 4 ≤ BM patterns < 7 |
- | 2 ≤ BM patterns < 4 |
-- | BM patterns = 1 |
x | BM patterns = 0 |
Appendix D
Appendix E
Pay-per-Use | Performance-Based Contracting | Rent Instead of Buy | Fractionalised Ownership | Guaranteed Availability | Two-Sided Market | E-COMMERCE | Direct Selling | Mass Customisation | Total | |
---|---|---|---|---|---|---|---|---|---|---|
Forklift | x | x | x | x | x | x | 6 | |||
Pallet truck | x | x | x | x | x | x | 6 | |||
AGV | x | x | x | x | x | x | 6 | |||
Golf cart | x | x | x | x | x | x | 6 | |||
On-grid buffer storage at charging station | x | x | x | x | x | x | x | 7 | ||
Commercial ESS with peak shaving purposes | x | x | x | x | x | x | x | 7 | ||
Industrial ESS with peak shaving purposes | x | x | x | x | x | x | x | 7 | ||
Industrial ESS with renewable firming purposes | x | x | x | x | x | x | x | 7 |
References
- Keil, P.; Schuster, S.F.; Wilhelm, J.; Travi, J.; Hauser, A.; Karl, R.C.; Jossen, A. Calendar Aging of Lithium-Ion Batteries. J. Electrochem. Soc. 2016, 163, A1872–A1880. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G. US ABC Electric Vehicle Battery Test Procedures Manual, Revision 2; DOE/ID-10479; Idaho National Engineering Laboratory (INEL), US Department of Energy Idaho Field Office: Idaho Falls, ID, USA, 1996; Volume 2, p. 39.
- Cready, E.; Lippert, J.; Pihl, J.; Weinstock, I.; Symons, P. Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications; Sandia National Lab.: Albuquerque, NM, USA, 2003. Available online: https://www.osti.gov/biblio/809607 (accessed on 14 March 2023).
- Tong, S.J.; Same, A.; Kootstra, M.A.; Park, J.W. Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation. Appl. Energy 2013, 104, 740–750. [Google Scholar] [CrossRef]
- Neubauer, J.; Pesaran, A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. J. Power Sources 2011, 196, 10351–10358. [Google Scholar] [CrossRef]
- Martinez-Laserna, E.; Sarasketa-Zabala, E.; Stroe, D.-I.; Swierczynski, M.; Warnecke, A.; Timmermans, J.M.; Goutam, S.; Rodriguez, P. Evaluation of lithium-ion battery second life performance and degradation. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Institute of Electrical and Electronics Engineers, Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar] [CrossRef]
- Locorotondo, E.; Cultrera, V.; Pugi, L.; Berzi, L.; Pasquali, M.; Andrenacci, N.; Lutzemberger, G.; Pierini, M. Electrical lithium battery performance model for second life applications. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar] [CrossRef]
- Wood, E.; Alexander, M.; Bradley, T.H. Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles. J. Power Sources 2011, 196, 5147–5154. [Google Scholar] [CrossRef]
- Debnath, U.K.; Ahmad, I.; Habibi, D. Quantifying economic benefits of second life batteries of gridable vehicles in the smart grid. Int. J. Electr. Power Energy Syst. 2014, 63, 577–587. [Google Scholar] [CrossRef]
- Saxena, S.; Le Floch, C.; MacDonald, J.; Moura, S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J. Power Sources 2015, 282, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Bobba, S.; Mathieux, F.; Ardente, F.; Blengini, G.A.; Cusenza, M.A.; Podias, A.; Pfrang, A. Life Cycle Assessment of repurposed electric vehicle batteries: An adapted method based on modelling energy flows. J. Energy Storage 2018, 19, 213–225. [Google Scholar] [CrossRef]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Assunção, A.; Moura, P.S.; de Almeida, A.T. Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy. Appl. Energy 2016, 181, 120–131. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Reuse of electric vehicle batteries in buildings: An integrated load match analysis and life cycle assessment approach. Energy Build. 2019, 186, 339–354. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.W.; Gaustad, G.; Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 2014, 83, 63–76. [Google Scholar] [CrossRef]
- Shafique, M.; Rafiq, M.; Azam, A.; Luo, X. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resour. Conserv. Recycl. 2022, 178, 106061. [Google Scholar] [CrossRef]
- Olsson, L.; Fallahi, S.; Schnurr, M.; Diener, D.; van Loon, P. Circular Business Models for Extended EV Battery Life. Batteries 2018, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Rehme, M.; Richter, S.; Temmler, A.; Götze, U. Second-Life Battery Applications—Market potentials and contribution to the cost effectiveness of electric vehicles. In Proceedings of the CoFAT 2016—Conference on Future Automotive Technology, Munich, Germany, 3–4 May 2016. [Google Scholar] [CrossRef]
- Williams, B.; Timothy, L. Analysis of the Combined Vehicle- and Post-Vehicle-Use Value of Lithium-Ion Plug-in-Vehicle Propulsion BatteriPes; California Energy Commission: Berkeley, CA, USA, 2011. Available online: https://escholarship.org/uc/item/60m7j3k1 (accessed on 14 March 2023).
- Casals, L.C.; García, B.A.; Aguesse, F.; Iturrondobeitia, A. Second life of electric vehicle batteries: Relation between materials degradation and environmental impact. Int. J. Life Cycle Assess. 2017, 22, 82–93. [Google Scholar] [CrossRef]
- Lemp, J.D.; Kockelman, K.M. Quantifying the external costs of vehicle use: Evidence from America’s top-selling light-duty models. Transp. Res. Part D Transp. Environ. 2008, 13, 491–504. [Google Scholar] [CrossRef]
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global Lithium Availability. J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Marano, V.; Onori, S.; Guezennec, Y.; Rizzoni, G.; Madella, N. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 536–543. [Google Scholar] [CrossRef]
- Ahmadi, L.; Fowler, M.; Young, S.B.; Fraser, R.A.; Gaffney, B.; Walker, S.B. Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustain. Energy Technol. Assess. 2014, 8, 9–17. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Qiao, D.; Wang, G.; Gao, T.; Wen, B.; Dai, T. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050. Sci. Total Environ. 2021, 764, 142835. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Ziemann, S.; Müller, D.B.; Schebek, L.; Weil, M. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resour. Conserv. Recycl. 2018, 133, 76–85. [Google Scholar] [CrossRef]
- Keil, P.; Schuster, S.; Lüders, C.V.; Hesse, H.; Arunachala, A.; Jossen, A. (Eds.) Lifetime Analyses of Lithium-Ion EV Batteries. In Proceedings of the 3rd Electromobility Challenging Issues Conference (ECI), Singapore, 1–4 December 2015. [Google Scholar]
- Choi, Y.; Rhee, S.-W. (Eds.) Current Status and Perspectives on Recycling of End-of-Life Battery of Electric Vehicle in Korea (Republic of). Waste Manag. 2020, 106, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Raugei, M.; Hutchinson, A. (Eds.) A Dynamic Material Flow Analysis of Lithium-Ion Battery Metals for Electric Vehicles and Grid Storage in the UK: Assessing the Impact of Shared Mobility and End-of-Life Strategies. Resour. Conserv. Recycl. 2021, 167, 105412. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2022: Paris; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/global-ev-outlook-2022 (accessed on 14 March 2023).
- Engel, H.; Hertzke, P.; Siccardo, G. Second-Life EV Batteries: The Newest Value Pool in Energy Storage; McKinsey Company: Dusseldorf, Germany, 2019. [Google Scholar]
- European Commission. An SME Strategy for a Sustainable and Digital EUROPE: COM (2020) 103 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0103 (accessed on 14 March 2023).
- European Commission. A New Circular Economy Action Plan: For a Cleaner and More Competitive Europe: COM (2020) 98 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN (accessed on 14 March 2023).
- European Commission. A New Industrial Strategy for Europe: COM (2020) 102 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0102 (accessed on 14 March 2023).
- Ferrara, C.; Ruffo, R.; Quartarone, E.; Mustarelli, P. Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling. Adv. Energy Sustain. Res. 2021, 2, 2100047. [Google Scholar] [CrossRef]
- Tao, Y.; Rahn, C.D.; Archer, L.A.; You, F. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 2021, 7, eabi7633. [Google Scholar] [CrossRef]
- Hossain, E.; Murtaugh, D.; Mody, J.; Faruque, H.M.R.; Haque Sunny, M.S.; Mohammad, N. A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access 2019, 7, 73215–73252. [Google Scholar] [CrossRef]
- Zhao, Y.; Pohl, O.; Bhatt, A.I.; Collis, G.E.; Mahon, P.J.; Rüther, T.; Hollenkamp, A.F. A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustain. Chem. 2021, 2, 167–205. [Google Scholar] [CrossRef]
- Bobba, S.; Podias, A.; Di Persio, F.; Messagie, M.; Tecchio, P.; Cusenza, M.A.; Eynard, U.; Mathieux, F.; Pfrang, A. Sustainability Assessment of Second Life Application of Automotive Batteries (SASLAB)—Final Report; JRC Exploratory Research; Publications Office of the European Union: Luxembourg, 2018. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC112543 (accessed on 14 March 2023).
- Casals, L.C.; Amante García, B.; Canal, C. Second life batteries lifespan: Rest of useful life and environmental analysis. J. Environ. Manag. 2019, 232, 354–363. [Google Scholar] [CrossRef]
- Shahjalal, M.; Roy, P.K.; Shams, T.; Fly, A.; Chowdhury, J.I.; Ahmed, M.R.; Liu, K. A review on second-life of Li-ion batteries: Prospects, challenges, and issues. Energy 2022, 241, 122881. [Google Scholar] [CrossRef]
- Canals Casals, L.; Barbero, M.; Corchero, C. Reused second life batteries for aggregated demand response services. J. Clean. Prod. 2019, 212, 99–108. [Google Scholar] [CrossRef]
- Jiao, N.; Evans, S. Business Models for Repurposing a Second-Life for Retired Electric Vehicle Batteries. In Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost; Pistoia, G., Liaw, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 323–344. ISBN 978-3-319-69950-9. [Google Scholar]
- Jiao, N.; Evans, S. Business Models for Sustainability: The Case of Second-life Electric Vehicle Batteries. Procedia. CIRP 2016, 40, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Lin, B.; Xie, C.; Elliott, R.J.; Radcliffe, J. Does energy storage provide a profitable second life for electric vehicle batteries? Energy Econ. 2020, 92, 105010. [Google Scholar] [CrossRef]
- Kampker, A.; Heimes, H.H.; Ordung, M.; Lienemann, C.; Hollah, A.; Sarovic, N. Evaluation of A Remanufacturing for Lithium Ion Batteries from Electric Cars. Int. J. Mech. Mechatron. Eng. 2016, 10, 1929–1935. [Google Scholar] [CrossRef]
- König, A.; Nicoletti, L.; Schröder, D.; Wolff, S.; Waclaw, A.; Lienkamp, M. An Overview of Parameter and Cost for Battery Electric Vehicles. World Electr. Veh. J. 2021, 12, 21. [Google Scholar] [CrossRef]
- UN. Proposal for a New UN GTR on In-Vehicle Battery Durability for Electrified Vehicles, GRPE-84-01. 12 November 2021. Available online: https://unece.org/sites/default/files/2021-10/GRPE-84-01e%20-%20clean.pdf (accessed on 14 March 2023).
- European Parliament. Proposal for a Regulation of the European Parliament and of the Council Concerning Batteries and Waste Batteries, Repealing Directive 2006/66/EC and Amending Regulation (EU) No 2019/1020, COM (2020) 798 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52020PC0798 (accessed on 14 March 2023).
- Cf. The Implementing Acts e.g. in Art 10 par 2, Art 65 Ab 1, Art 70 Abs 3 etc European Battery Regulation Draft, COM/2020/798 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020PC0798 (accessed on 14 March 2023).
- Council Decision (EU) 2022/387 of 3 March 2022 on the Position to Be Taken on Behalf of the European Union in the World Forum for Harmonisation of Vehicle Regulations of the United Nations Economic Commission for Europe as Regards the Proposals for Modifications to UN Regulations Nos 0, 9, 10, 13, 39, 46, 51, 53, 55, 63, 78, 79, 90, 107, 108, 109, 116, 117, 121, 125, 141, 142, 148, 149, 152, 154, 155, 160, 161, 162 and 163, as Regards the Proposal for a New UN Regulation on Studded Tyres, as Regards the Proposal for a New UN Global Technical Regulation on in-Vehicle Battery Durability for Electric Vehicles, as Regards the Proposal for Amendments to Consolidated Resolution R.E.5, as Regards the Proposal for Authorisation to Develop Amendment 4 to UN GTR No 3, and as Regards the Proposal for Authorisation to Develop a New UN Global Technical Regulation on Brake Particulate Emissions. Available online: https://eur-lex.europa.eu/eli/dec/2022/387 (accessed on 14 March 2023).
- Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D.-I.; Swierczynski, M.; Goikoetxea, A. Battery second life: Hype, hope or reality? A critical review of the state of the art. Renew. Sustain. Energy Rev. 2018, 93, 701–718. [Google Scholar] [CrossRef]
- Hu, X.; Deng, X.; Wang, F.; Deng, Z.; Lin, X.; Teodorescu, R.; Pecht, M.G. A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proc. IEEE 2022, 110, 735–753. [Google Scholar] [CrossRef]
- Zhu, J.; Mathews, I.; Ren, D.; Li, W.; Cogswell, D.; Xing, B.; Sedlatschek, T.; Kantareddy, S.N.R.; Yi, M.; Gao, T.; et al. End-of-life or second-life options for retired electric vehicle batteries. Cell Rep. Phys. Sci. 2021, 2, 100537. [Google Scholar] [CrossRef]
- Wewer, A.; Bilge, P.; Dietrich, F. Advances of 2nd Life Applications for Lithium Ion Batteries from Electric Vehicles Based on Energy Demand. Sustainability 2021, 13, 5726. [Google Scholar] [CrossRef]
- Haram, M.H.S.M.; Lee, J.W.; Ramasamy, G.; Ngu, E.E.; Thiagarajah, S.P.; Lee, Y.H. Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges. Alex. Eng. J. 2021, 60, 4517–4536. [Google Scholar] [CrossRef]
- Reinhardt, R.; Christodoulou, I.; Gassó-Domingo, S.; Amante García, B. Towards sustainable business models for electric vehicle battery second use: A critical review. J. Environ. Manag. 2019, 245, 432–446. [Google Scholar] [CrossRef]
- Ning, G.; Haran, B.; Popov, B.N. Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 2003, 117, 160–169. [Google Scholar] [CrossRef]
- Cabrera-Castillo, E.; Niedermeier, F.; Jossen, A. Calculation of the state of safety (SOS) for lithium ion batteries. J. Power Sources 2016, 324, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Fleischhammer, M.; Waldmann, T.; Bisle, G.; Hogg, B.-I.; Wohlfahrt-Mehrens, M. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. J. Power Sources 2015, 274, 432–439. [Google Scholar] [CrossRef]
- Abdel-Monem, M.; Trad, K.; Omar, N.; Hegazy, O.; van den Bossche, P.; van Mierlo, J. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries. Energy 2017, 120, 179–191. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. ETransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Bitzer, B.; Gruhle, A. A new method for detecting lithium plating by measuring the cell thickness. J. Power Sources 2014, 262, 297–302. [Google Scholar] [CrossRef]
- Spingler, F.B.; Wittmann, W.; Sturm, J.; Rieger, B.; Jossen, A. Optimum fast charging of lithium-ion pouch cells based on local volume expansion criteria. J. Power Sources 2018, 393, 152–160. [Google Scholar] [CrossRef]
- Rallo, H.; Benveniste, G.; Gestoso, I.; Amante, B. Economic analysis of the disassembling activities to the reuse of electric vehicles Li-ion batteries. Resour. Conserv. Recycl. 2020, 159, 104785. [Google Scholar] [CrossRef]
- Kotak, Y.; Marchante Fernández, C.; Canals Casals, L.; Kotak, B.S.; Koch, D.; Geisbauer, C.; Trilla, L.; Gómez-Núñez, A.; Schweiger, H.-G. End of Electric Vehicle Batteries: Reuse vs. Recycle. Energies 2021, 14, 2217. [Google Scholar] [CrossRef]
- Lian, J.; Koch, M.; Li, W.; Wierzbicki, T.; Zhu, J. Mechanical Deformation of Lithium-Ion Pouch Cells under in-plane Loads—Part II: Computational Modeling. J. Electrochem. Soc. 2020, 167, 90556. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Yuan, C.; Wang, L.; Gao, X.; Yin, S.; Xu, J. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review. Energy Storage Mater. 2020, 24, 85–112. [Google Scholar] [CrossRef]
- Zhu, J.; Koch, M.M.; Lian, J.; Li, W.; Wierzbicki, T. Mechanical Deformation of Lithium-Ion Pouch Cells under In-Plane Loads—Part I: Experimental Investigation. J. Electrochem. Soc. 2020, 167, 90533. [Google Scholar] [CrossRef]
- Li, W.; Xia, Y.; Chen, G.; Sahraei, E. Comparative study of mechanical-electrical-thermal responses of pouch, cylindrical, and prismatic lithium-ion cells under mechanical abuse. Sci. China Technol. Sci. 2018, 61, 1472–1482. [Google Scholar] [CrossRef]
- Rezvanizaniani, S.M.; Liu, Z.; Chen, Y.; Lee, J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 2014, 256, 110–124. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Zinth, V.; von Lüders, C.; Hofmann, M.; Hattendorff, J.; Buchberger, I.; Erhard, S.; Rebelo-Kornmeier, J.; Jossen, A.; Gilles, R. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. J. Power Sources 2014, 271, 152–159. [Google Scholar] [CrossRef]
- Gassmann, O.; Frankenberger, K.; Csik, M. Geschäftsmodelle Entwickeln: 55 Innovative Konzepte Mit Dem St. Galler Business Model Navigator; Carl Hanser Verlag: München, Germany, 2017. [Google Scholar]
- Canals Casals, L.; Amante García, B.; Cremades, L.V. Electric vehicle battery reuse: Preparing for a second life. J. Ind. Eng. Manag. 2017, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Brauer, S.; Monhof, M.; Klor, B.; Plenter, F.; Beverungen, D.; Siemen, C. Residential Energy Storage from Repurposed Electric Vehicle Batteries: Market Overview and Development of a Service-Centered Business Model. In Proceedings of the 18th IEEE Conference on Business Informatics, Paris, France, 29 August–1 September 2016; Kornyshova, E., Poels, G., Huemer, C., Eds.; IEEE: Piscataway, NJ, USA, 2016; pp. 143–152, ISBN 978-1-5090-3231-0. [Google Scholar]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward Sustainable Reuse of Retired Lithium-ion Batteries from Electric Vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- Albertsen, L.; Richter, J.L.; Peck, P.; Dalhammar, C.; Plepys, A. Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resour. Conserv. Recycl. 2021, 172, 105658. [Google Scholar] [CrossRef]
- Jiao, M.; Pan, F.; Huang, X.; Yuan, X. Application potential of second-life lithium-ion battery on forklift. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Roschier, S.; Pitkämäki, A.; Jonsson, H. Business Finland: Assessment of Li-Ion Battery Reuse Solutions—Final Report. 2020. Available online: https://www.businessfinland.fi/4974e0/globalassets/finnish-customers/02-build-your-network/bioeconomy--cleantech/batteries-from-finland/assessment-of-li-ion-battery-reuse-solutions.pdf (accessed on 14 March 2023).
- Neubauer, J.; Smith, K.; Wood, E.; Pesaran, A. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015.
- Hegazy, O.; Monem, M.A.; Lataire, P.; van Mierlo, J. Modeling and analysis of a hybrid PV/Second-Life battery topology based fast DC-charging systems for electric vehicles. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–11. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2020; IEA: Paris, France, 2020. [Google Scholar] [CrossRef]
- Mathews, I.; Xu, B.; He, W.; Barreto, V.; Buonassisi, T.; Peters, I.M. Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging. Appl. Energy 2020, 269, 115127. [Google Scholar] [CrossRef]
- Klör, B.; Beverungen, D.; Bräuer, S.; Plenter, F.; Monhof, M. A Market for Trading Used Electric Vehicle Batteries—Theoretical Foundations and Information Systems. In Proceedings of the European Conference on Information Systems (ECIS), Münster, Germany, 26–29 May 2015. [Google Scholar]
- Reid, G.; Julve, J. Second Life-Batteries as Flexible Storage For Renewables Energies. 2016. Available online: https://speicherinitiative.at/wp-content/uploads/sites/8/2020/11/05-SecondLife-Batterienflexible-EE-Speicher.pdf (accessed on 14 March 2023).
- Canals Casals, L.; Amante García, B.; González Benítez, M.M. Aging Model for Re-used Electric Vehicle Batteries in Second Life Stationary Applications. In Project Management and Engineering Research: AEIPRO; Springer International Publishing: Cham, Switzerland, 2016; Volume 154, pp. 139–151. [Google Scholar] [CrossRef]
- Abdel-Monem, M.; Hegazy, O.; Omar, N.; Trad, K.; van den Bossche, P.; van Mierlo, J. Lithium-ion batteries: Comprehensive technical analysis of second-life batteries for smart grid applications. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; pp. P.1–P.16. [Google Scholar] [CrossRef]
- Nguyen, C.-L.; Colicchio, E.; Primiani, P.; Viglione, L.; Al-Haddad, K.; Woodward, L. Determination of Second-Life Battery Capacity and Load Rating for a Standalone E-Bike Charging Station Powered by Hybrid Renewable Energy System. In Proceedings of the 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 8–10 July 2020; pp. 346–351. [Google Scholar] [CrossRef]
- Krabberød, F.; Ho, A. End of Life Strategies for Electric Vehicle Lithium-Ion Batteries. 2020. Available online: https://autorecyclingworld.com/wp-content/uploads/2020/07/EoL-Strategies-for-EV-LIBs-2020-HSSMI.pdf (accessed on 14 March 2023).
- Ambrose, H.; Gershenson, D.; Gershenson, A.; Kammen, D. Driving rural energy access: A second-life application for electric-vehicle batteries. Environ. Res. Lett. 2014, 9, 94004. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Klein, M. Second Life Battery Pack as Stationary Energy Storage for Smart Grid; SAE Technical Paper 2014-01-0342; University of California: Oakland, CA, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Debnath, U.K.; Ahmad, I.; Habibi, D. Gridable vehicles and second life batteries for generation side asset management in the Smart Grid. Int. J. Electr. Power Energy Syst. 2016, 82, 114–123. [Google Scholar] [CrossRef]
- Gohla-Neudecker, B.; Bowler, M.; Mohr, S. Battery 2nd life: Leveraging the sustainability potential of EVs and renewable energy grid integration. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015; pp. 311–318. [Google Scholar] [CrossRef]
- Heymans, C.; Walker, S.B.; Young, S.B.; Fowler, M. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 2014, 71, 22–30. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Garcia, R.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Primary and secondary use of electric mobility batteries from a life cycle perspective. J. Power Sources 2014, 262, 169–177. [Google Scholar] [CrossRef]
- Kamath, D.; Shukla, S.; Arsenault, R.; Kim, H.C.; Anctil, A. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications. Waste Manag. 2020, 113, 497–507. [Google Scholar] [CrossRef]
- Vaidya, R.; Selvan, V.; Badami, P.; Knoop, K.; Kannan, A.M. Plug-In Hybrid Vehicle and Second-Life Applications of Lithium-Ion Batteries at Elevated Temperature. Batter. Supercaps 2018, 1, 75–82. [Google Scholar] [CrossRef]
- Walker, S.B.; Heymans, C.; Fowler, M.; Young, S.B.; Fraser, R.; van Lanen, D. Incentives for the reuse of electric vehicle batteries for load-shifting in residences. Int. J. Process Syst. Eng. 2015, 3, 70. [Google Scholar] [CrossRef]
- Ioakimidis, C.; Murillo-Marrodán, A.; Bagheri, A.; Thomas, D.; Genikomsakis, K. Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios. Sustainability 2019, 11, 2527. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zhang, Q.; Li, H.; Li, Y.; Liu, B. Economic Analysis on Repurposed EV batteries in a Distributed PV System under Sharing Business Models. Energy Procedia 2019, 158, 4304–4310. [Google Scholar] [CrossRef]
- Knowles, M.; Morris, A. The Impact of second Life Electric vehicle Batteries on the Viability of renewable Energy Sources. Br. J. Appl. Sci. Technol. 2014, 4, 152–167. [Google Scholar] [CrossRef]
- Martinez-Laserna, E.; Sarasketa-Zabala, E.; Villarreal Sarria, I.; Stroe, D.-I.; Swierczynski, M.; Warnecke, A.; Timmermans, J.-M.; Goutam, S.; Omar, N.; Rodriguez, P. Technical Viability of Battery Second Life: A Study from the Ageing Perspective. IEEE Trans. Ind. Appl. 2018, 54, 2703–2713. [Google Scholar] [CrossRef]
- Mayer, T. A “Second Life” for Lithium-Ion Battery Modules; TÜV SÜD: Munich, Germany, 2019. [Google Scholar]
- Tong, S.; Fung, T.; Klein, M.P.; Weisbach, D.A.; Park, J.W. Demonstration of reusing electric vehicle battery for solar energy storage and demand side management. J. Energy Storage 2017, 11, 200–210. [Google Scholar] [CrossRef]
- McLoughlin, F.; Conlon, M. Secondary Re-Use of Batteries from Electric Vehicles for Building Integrated Photo-Voltaic (BIPV) Applications: PV CROPS Technical Report; Technological University Dublin: Dublin, Ireland, 2015. [Google Scholar]
- Saez-de-Ibarra, A.; Martinez-Laserna, E.; Koch-Ciobotaru, C.; Rodriguez, P.; Stroe, D.-I.; Swierczynski, M. Second life battery energy storage system for residential demand response service. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 2941–2948. [Google Scholar] [CrossRef]
- Shokrzadeh, S.; Bibeau, E. Repurposing Batteries of Plug-In Electric Vehicles to Support Renewable Energy Penetration in the Electric Grid; SAE International: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Lacey, G.; Putrus, G.; Salim, A. The use of second life electric vehicle batteries for grid support. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; pp. 1255–1261. [Google Scholar] [CrossRef]
- Keeli, A.; Sharma, R.K. Optimal use of second life battery for peak load management and improving the life of the battery. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Rallo, H.; Canals Casals, L.; de La Torre, D.; Reinhardt, R.; Marchante, C.; Amante, B. Lithium-ion battery 2nd life used as a stationary energy storage system: Ageing and economic analysis in two real cases. J. Clean. Prod. 2020, 272, 122584. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Kashiwagi, T. Extended Utilization of Electric Vehicles and their Re-used Batteries to Support the Building Energy Management System. Energy Procedia 2015, 75, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Gao, Y.; Li, N. State of health estimation of second-life LiFePO4 batteries for energy storage applications. J. Clean. Prod. 2018, 205, 754–762. [Google Scholar] [CrossRef]
- Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.; Stroe, D.-I.; Swierczynski, M.; Rodriguez, P. Second life battery energy storage system for enhancing renewable energy grid integration. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 78–84. [Google Scholar] [CrossRef]
- Matsuda, Y.; Tanaka, K. Reuse EV battery system for renewable energy introduction to island powergrid. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Swierczynski, M.; Stroe, D.I.; Laserna, E.M.; Sarasketa-Zabala, E.; Timmermans, J.M.; Goutam, S.; Teodorescu, R. The Second Life Ageing of the NMC/C Electric Vehicle Retired Li-Ion Batteries in the Stationary Applications. ECS Trans. 2016, 74, 55–62. [Google Scholar] [CrossRef]
- Chen, X.; Tang, J.; Li, W.; Xie, L. Operational reliability and economy evaluation of reusing retired batteries in composite power systems. Int. J. Energy Res. 2020, 44, 3657–3673. [Google Scholar] [CrossRef]
- Song, Z.; Feng, S.; Zhang, L.; Hu, Z.; Hu, X.; Yao, R. Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios. Appl. Energy 2019, 251, 113411. [Google Scholar] [CrossRef]
- Canals Casals, L.; Amante García, B. Second-Life Batteries on a Gas Turbine Power Plant to Provide Area Regulation Services. Batteries 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Retail Market Design Service. Standard Load Profiles. Available online: https://rmdservice.com/standard-load-profiles/ (accessed on 5 January 2015).
- Manafi, E.; Tavakkoli-Moghaddam, R.; Mahmoodjanloo, M. A centroid opposition-based coral reefs algorithm for solving an automated guided vehicle routing problem with a recharging constraint. Appl. Soft Comput. 2022, 128, 109504. [Google Scholar] [CrossRef]
- Research and Markets. Global Automated Guided Vehicle Market Size, Share & Trends Analysis Report by Vehicle Type, by Navigation Technology, by Application, by End-Use Industry, by Component, by Battery Type, by Region, and Segment Forecasts, 2021–2028; Research and Markets: Dublin, Ireland, 2021. [Google Scholar]
- IRENA. Electricity Storage Valuation Framework: Assessing System Value and Ensuring Project Viability; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; ISBN 978-92-9260-161-4. [Google Scholar]
- Mulleriyawage, U.G.; Shen, W. A Review of Battery Energy Storage Systems for Residential DC Microgrids and Their Economical Comparisons. DEStech Trans. Environ. Energy Earth Sci. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelini, E.; Höschele, P.; Heindl, S.F.; Erker, S.; Ellersdorfer, C. Experimental investigation on reversible swelling mechanisms of Lithium-ion batteries under varying preload force. Batteries, 2023; under review. [Google Scholar]
- Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC, OJ L 266. European Commission: Brussels, Belgium, 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006L0066 (accessed on 14 March 2023).
- Austrian Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über die Abfallvermeidung, Sammlung und Behandlung von Altbatterien und-akkumulatoren (Batterienverordnung), BGBl. II 159/2008 as Amended by BGBl II 311/2021. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20005815 (accessed on 14 March 2023).
- Austrian Bundesgesetz über eine Nachhaltige Abfallwirtschaft (Abfallwirtschaftsgesetz 2002—AWG 2002), BGBl I 102/2002 as Ammended by BGBl I 200/2021. Available online: https://www.ris.bka.gv.at/eli/bgbl/i/2002/102/P1/NOR40239295?Abfrage=Bundesnormen&Titel=AWG+2002&VonParagraf=1&SkipToDocumentPage=true&ResultFunctionToken=ef72e64f-329b-48f3-9c12-85468bcecfc4 (accessed on 14 March 2023).
- German Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der Umweltverträglichen Bewirtschaftung von Abfällen (Deutsches Kreislaufwirtschaftsgesetz dKrWG), BGBl I 212/2012 as Amended. Available online: https://www.gesetze-im-internet.de/krwg/ (accessed on 14 March 2023).
- German Gesetz über das Inverkehrbringen, die Rücknahme und die Umweltverträgliche Entsorgung von Batterien und Akkumulatoren (Deutsches Batteriegesetz—BattG), BGBl I 1582/2009 as Amended by BGBl I 2280/2020. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=bundesnormen&Gesetzesnummer=10001597 (accessed on 14 March 2023).
- Bundesgesetz zum Schutz vor Gefährlichen Produkten (Produktsicherheitsgesetz 2004—PSG 2004 2004), BGBl I 16/2005, idgF. Available online: https://www.ris.bka.gv.at/eli/bgbl/i/2005/16/P0/NOR30004355?Abfrage=Bundesnormen&Index=82*&Gesetzesnummer=&VonParagraf=0&VonAnlage=&Kundmachungsnummer=&FassungVom=26.07.2022&VonInkrafttretedatum=&BisInkrafttretedatum=&VonAusserkrafttretedatum=&BisAusserkrafttretedatum=&ImRisSeitVonDatum=&ImRisSeitBisDatum= (accessed on 14 March 2023).
- Bundesgesetz über Sicherheitsmaßnahmen, Normalisierung und Typisierung auf dem Gebiete der Elektrotechnik (Elektrotechnikgesetz 1992—ETG 1992), BGBl 106/1993. Available online: https://ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10012241&FassungVom=2022-12-21 (accessed on 14 March 2023).
- Verordnung der Bundesministerin für Digitalisierung und Wirtschaftsstandort über Sicherheit, Normalisierung und Typisierung Elektrischer Betriebsmittel und Elektrischer Anlagen (Elektrotechnikverordnung 2020—ETV 2020), BGBl II 308/2020. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20011222 (accessed on 14 March 2023).
- In This Context, National Provisions such as the Austrian or German Product Liability Act Are Largely Based on European Law Directives; cf. Council Directive of 25 July 1985 on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Concerning Liability for Defective Products, Abl L 210/29. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:31985L0374&from=HU (accessed on 14 March 2023).
- § 5 para 1 and 2 Austrian Produktsicherhreitsgesetz, BGBl I 16/2005 as Amended by BGBl I 32/2018. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20004009 (accessed on 14 March 2023).
- Art 7 Directive 2006/42/EG of the European Parliament and of the Council of 17 May 2006 on Machinery, and Amending Directive 95/16/EC, OJ L 157/24. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006L0042 (accessed on 14 March 2023).
Mobility Degree | Category | Application | Source | |
---|---|---|---|---|
Mobile | Commercial EVs | 1 | Short-range EVs | [19,41,45,60,80] |
2 | Hybrid trucks | [80] | ||
Industrial Vehicles | 3 | Forklifts | [19,20,20,60,81,82,83,84] | |
4 | Pallet trucks | [19,20,20,60,82] | ||
5 | Tractors | [19,20,20,60,82] | ||
6 | Transport trolleys | [19,20,20,60,82] | ||
7 | Sweepers | [19,20,20,60,82] | ||
8 | Automated guided vehicles (AGVs) | [19,20,20,60,82] | ||
9 | Excavators | [19,20,20,60,82] | ||
10 | Dumpers | [19,20,20,60,82] | ||
11 | Wheel loaders | [19,20,20,60,82] | ||
12 | Telescopic handlers | [19,20,20,60,82] | ||
13 | Airport pushback tractors | Expert feedback | ||
14 | Airport belt loaders | Expert feedback | ||
15 | Airport passenger stairs | Expert feedback | ||
Micro-mobility | 16 | E-bikes | [19,20,20,80] | |
17 | E-scooters | [19,20,20] | ||
18 | Electric wheelchairs | [19,20,20,81] | ||
Lightweight vehicles | 19 | Golf carts | [19,20,20,80,82,85] | |
20 | Three-wheel vehicles | [19,20,20,82,85] | ||
Lead–acid replacement | 21 | Automotive starting | [86] | |
22 | Automotive lighting | [86] | ||
23 | Automotive ignition | [86] | ||
24 | Industrial trucks | [86] | ||
Autonomous mobile robots | 25 | Robotic vacuum cleaners | [80] | |
26 | Robotic lawnmowers | Expert feedback | ||
Consumer electronics | 27 | Leisure time gadgets | [80] | |
28 | Kitchen appliances | Expert feedback | ||
29 | Working tools | Expert feedback | ||
Marine applications | 30 | Full propulsion | [19,83,85] | |
31 | Hybrid propulsion | [19,80,83,85] | ||
32 | Spinning reserve | Expert feedback | ||
33 | Load-levelling | Expert feedback | ||
34 | Shore-stations | [85] | ||
35 | Peak shaving/transient load management | [85] | ||
36 | Energy recapture | Expert feedback | ||
Rail transport | 37 | Trams power supply | [87] | |
38 | Trams backup system | Expert feedback | ||
39 | Trains power supply | Expert feedback | ||
40 | Trains backup system | Expert feedback | ||
FC-based transportation | 41 | Energy buffer for H2FC | Expert feedback | |
Semi- stationary | Mobile power supplies | 42 | Power-stations for construction sites | [20,20,82] |
43 | Power-stations for major events | [20,20] | ||
44 | Power-stations for outdoor camping | Expert feedback | ||
45 | Power-stations for outdoor leisure office | Expert feedback | ||
46 | Power-stations for outdoor emergency power supply | [20,20] | ||
47 | Automotive mobile charging stations | [19,56,82] | ||
Other | 48 | Buffers for stationary traffic signs | Expert feedback | |
Stationary | Lead–acid replacement | 49 | Telecommunication backup power | [5,85,86] |
50 | Uninterruptible power supplies | [85,86,88] | ||
EV chargers | 51 | On-grid buffer storages at charging station | [19,20,20,41,44,45,56,60,81,83,87,89,90,91,92] | |
52 | Off-grid buffer storages at charging station | [5,18,45,56,83,89,91,93,94] | ||
Special grids | 53 | Micro-grids | [20,20,41,45,56,60,85,88,91,95,96,97] | |
54 | Smart grids | [11,41,45,56,60,85,88,91,95,96,97,98,99] | ||
Residential ESS | 55 | Residential ESSs with load following purposes | [19,20,20,21,41,45,56,57,60,81,83,85,86,87,91,92,95,100,101,102,103,104,105,106] | |
56 | Residential ESSs connected to a RES | [8,15,16,19,20,20,21,41,43,44,45,56,57,81,89,92,100,101,102,103,104,105,106,107,108,109,110,111,112,113] | ||
57 | Residential ESSs with backup purposes | [19,20,20,41,56,57,60,83,85,90,91,95,111] | ||
Commercial ESS | 58 | Commercial ESSs with peak shaving purposes | [5,19,41,43,45,56,57,60,80,82,83,86,88,90,91,93,95,100,101,102,103,111,114,115,116] | |
59 | Commercial ESSs with load following purposes | [5,20,20,21,41,45,46,56,57,60,86,88,104,105,111,116] | ||
60 | Commercial ESSs with backup purposes | [19,20,20,41,45,57,60,80,90,91,92,95,111] | ||
Industrial ESS | 61 | Industrial ESSs with load levelling purposes | [5,19,20,20,21,41,45,57,60,82,111,117,118] | |
62 | Industrial ESSs with renewable firming purposes | [5,7,20,20,21,41,45,56,57,60,80,81,82,85,88,89,90,91,92,95,100,102,103,108,111,113,114,119,120,121,122,123] | ||
63 | Industrial ESSs with spinning reserve/area regulation purposes | [5,7,19,21,41,44,45,60,86,89,90,91,95,103,111,114,124] | ||
64 | Industrial ESSs with peak shaving purposes | [5,19,41,44,45,56,60,80,82,83,86,88,91,93,95,101,102,103,111,114,115] | ||
65 | Industrial ESSs with transmission stabilisation purposes | [7,20,20,21,41,45,56,60,80,86,88,91,95,114,118] |
Application | Max Discharge | Max Charge | Required Capacity | Degree of Mobility | Min T | Max T | Promising BM Patterns * | Legal Knockout Criteria | Score |
---|---|---|---|---|---|---|---|---|---|
[C-Rate] | [C-Rate] | [kWh] | [-] | [°C] | [°C] | [-] | [-] | ||
Forklift | + (0.71) | ++ (0.89) | ++ (34) | ++ (Mobile) | - (0) | o (40) | o (6) | o (None) | 5 |
Pallet truck | + (0.56) | - (3.33) | ++ (2) | ++ (Mobile) | o (10) | o (30) | o (6) | o (None) | 3 |
AGV | ++ (0.13) | ++ (0.50) | ++ (10) | ++ (Mobile) | o (10) | o (30) | o (6) | o (None) | 7 |
Golf cart | x (6.90) | ++ (0.35) | ++ (3) | ++ (Mobile) | - (0) | o (40) | o (6) | o (None) | Discarded |
On-grid buffer storage at charging station | - (2.29) | + (1.22) | + (140) | + (Stationary) | x (−30) | - (50) | + (7) | o (None) | Discarded |
Commercial ESS with peak shaving purposes | o (1.00) | + (1.00) | o (4000) | + (Stationary) | + (20) | o (30) | + (7) | o (None) | 5 |
Industrial ESS with peak shaving purposes | o (1.00) | + (1.00) | o (4000) | + (Stationary) | + (20) | o (30) | + (7) | o (None) | 5 |
Industrial ESS with renewable firming purposes | ++ (0.20) | ++ (0.20) | - (10000) | + (Stationary) | + (20) | o (30) | + (7) | o (None) | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelini, E.; Höschele, P.; Ratz, F.; Stadlbauer, M.; Rom, W.; Ellersdorfer, C.; Moser, J. Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects. Energies 2023, 16, 2830. https://doi.org/10.3390/en16062830
Michelini E, Höschele P, Ratz F, Stadlbauer M, Rom W, Ellersdorfer C, Moser J. Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects. Energies. 2023; 16(6):2830. https://doi.org/10.3390/en16062830
Chicago/Turabian StyleMichelini, Emanuele, Patrick Höschele, Florian Ratz, Michael Stadlbauer, Werner Rom, Christian Ellersdorfer, and Jörg Moser. 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects" Energies 16, no. 6: 2830. https://doi.org/10.3390/en16062830
APA StyleMichelini, E., Höschele, P., Ratz, F., Stadlbauer, M., Rom, W., Ellersdorfer, C., & Moser, J. (2023). Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects. Energies, 16(6), 2830. https://doi.org/10.3390/en16062830