Practical Approximation of Sheet Losses Taking into Account the Guillotine and Laser Cutting Effect
Abstract
:1. Introduction
2. Approximation of Losses in Electrical Sheets
3. Method and Range of Measurements of Loss Characteristics of Electrotechnical Steel Sheets
4. Verification of the Proposed Approximation Method for Samples Cut with the Use of a Guillotine
5. Verification of the Proposed Approximation Method for Samples Cut with the Use of the Laser
6. Summary of the Impact of the Punching Method on the Power Loss of Electrical Sheet
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Energy Efficiency 2022; International Energy Agency: Paris, France, 2022. [Google Scholar]
- IEC 60404-2:2008, Edition 3.1; Magnetic Materials—Part 2: Methods of Measurement of the Magnetic Properties of Electrical Steel Sheet and Strip by Means of an Epstein Frame. IEC: London, UK.
- IEC 60404-3:2009, Edition 2.0; Magnetic Materials—Part 3: Methods of Measurement of the Magnetic Properties of Electrical Steel Strip and Sheet by Means of a Single Sheet Tester. IEC: London, UK.
- Clerc, A.J.; Muetze, A. Measurement of stator core magnetic degradation during the manufacturing process. IEEE Trans. Ind. Appl. 2012, 48, 1344–1352. [Google Scholar] [CrossRef]
- Al-Timimy, A.; Vakil, G.; Degano, M.; Giangrande, P.; Gerada, C.; Galea, M. Considerations on the effects that core material machining has on an electrical machine’s performance. IEEE Trans. Energy Convers. 2018, 33, 1154–1163. [Google Scholar] [CrossRef]
- Sundaria, R.; Lehikoinen, A.; Arkkio, A.; Belahcen, A. Effects of manufacturing processes on core losses of electrical machines. IEEE Trans. Energy Convers. 2021, 36, 197–206. [Google Scholar] [CrossRef]
- Leitner, S.; Gruebler, H.; Muetze, A. Effect of manufacturing influences on magnetic performance parameters of sub-fractional horsepower motors. IEEE Trans. Magn. 2021, 57, 8205209. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zhang, S.; Pop, A.C.; Gyselinck, J.J.C. Effect of electrical steel punching on the performance of fractional-kw electrical machines. IEEE Trans. Energy Convers. 2022, 37, 1854–1863. [Google Scholar] [CrossRef]
- Weiss, H.A.; Leuning, N.; Steentjes, S.; Hameyer, K.; Andorfer, T.; Jenner, S.; Volk, W. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. J. Magn. Magn. Mater. 2017, 421, 250–259. [Google Scholar] [CrossRef]
- Wu, W.; Cao, H.; Ou, H.; Chen, Z.; Zhang, X.; Luo, Z.; Chen, S.; Li, R. Effects of punching process on crystal orientations, magnetic and mechanical properties in non-oriented silicon steel. J. Magn. Magn. Mater. 2017, 444, 211–217. [Google Scholar] [CrossRef]
- Weiss, H.A.; Tröber, P.; Golle, R.; Steentjes, S.; Leuning, N.; Elfgen, S.; Hameyer, K.; Volk, W. Impact of punching parameter variations on magnetic properties of nongrain-oriented electrical steel. IEEE Trans. Ind. Appl. 2018, 54, 5869–5878. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, L.; Soulard, J.; Silvester, B.; Davis, C. Quantitative characterisation and modelling of the effect of cut edge damage on the magnetic properties in NGO electrical steel. J. Magn. Magn. Mater. 2022, 551, 2022–169185. [Google Scholar] [CrossRef]
- Hofmann, M.; Naumoski, H.; Herr, U.; Herzog, H.-G. Magnetic Properties of electrical steel sheets in respect of cutting: Micromagnetic analysis and macromagnetic modeling. IEEE Trans. Magn. 2016, 52, 1–14. [Google Scholar] [CrossRef]
- Rygal, R.; Moses, A.J.; Derebasi, N.; Schneider, J.; Schoppa, A. Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical steels. J. Magn. Magn. Mater. 2000, 215–216, 687–689. [Google Scholar] [CrossRef]
- Crevecoeur, G.; Sergeant, P.; Dupre, L.; Vandenbossche, L.; Van de Walle, R. analysis of the local material degradation near cutting edges of electrical steel sheets. IEEE Trans. Magn. 2008, 44, 3173–3176. [Google Scholar] [CrossRef]
- Goldbeck, G.; Cossale, M.; Kitzberger, M.; Bramerdorfer, G.; Andessner, D.; Amrhein, W. incorporating the soft magnetic material degradation to numerical simulations. IEEE Trans. Ind. Appl. 2020, 56, 3584–3593. [Google Scholar] [CrossRef]
- Cossale, M.; Kitzberger, M.; Goldbeck, G.; Bramerdorfer, G.; Andessner, D.; Amrhein, W. local degradation in soft magnetic materials: A simplified modeling approach. IEEE Trans. Ind. Appl. 2019, 55, 5897–5905. [Google Scholar] [CrossRef]
- Bali, M.; De Gersem, H.; Muetze, A. Finite-element modeling of magnetic material degradation due to punching. IEEE Trans. Magn. 2014, 50, 745–748. [Google Scholar] [CrossRef]
- Sundaria, R.; Lehikoinen, A.; Hannukainen, A.; Arkkio, A.; Belahcen, A. Mixed-order finite-element modeling of magnetic material degradation due to cutting. IEEE Trans. Magn. 2018, 54, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gmyrek, Z.; Szulakowski, J.; Vaschetto, S.; Cavagnino, A. Changes in the steinmetz coefficients of punched soft-magnetic sheets. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Leuning, N.; Schauerte, B.; Schweren, S.; Hameyer, K. Loss parameter identification after cutting for different non-oriented electrical steel grades. IEEE Trans. Magn. 2022, 58, 1–5. [Google Scholar] [CrossRef]
- Elfgen, S.; Steentjes, S.; Böhmer, S.; Franck, D.; Hameyer, K. Continuous local material model for cut edge effects in soft magnetic materials. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Sano, H.; Narita, K.; Zeze, E.; Yamada, T.; Kazuki, U.; Akatsu, K. A practical approach for electromagnetic analysis with the effect of the residual strain due to manufacturing processes. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Sundaria, R. Effect of Manufacturing Processes on Electrical Machine’s Performance. Ph.D. Thesis, School of Electrical Engineering, Aalto University, Espoo, Finland, 2020. [Google Scholar]
- Sundaria, R.; Nair, D.G.; Lehikoinen, A.; Arkkio, A.; Belahcen, A. Effect of laser cutting on core losses in electrical machines—measurements and modeling. IEEE Trans. Ind. Electron. 2020, 67, 7354–7363. [Google Scholar] [CrossRef]
- Takeuchi, K.; Matsushita, M.; Makino, H.; Tsuboi, Y.; Amemiya, N. A novel modeling method for no-load saturation characteristics of synchronous machines using finite element analysis. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Holopainen, T.P.; Rasilo, P.; Arkkio, A. Identification of magnetic properties for cutting edge of electrical steel sheets. IEEE Trans. Ind. Appl. 2017, 53, 1049–1053. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.; Anderson, P.; Hall, J.; Gao, Y. Power loss models in punched non-oriented electrical steel rings. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Gmyrek, Z.; Cavagnino, A.; Ferraris, L. Estimation of magnetic properties and damaged area width due to punching process: Modeling and experimental research. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 1301–1308. [Google Scholar] [CrossRef]
- Steinmetz, C. On the law of hysteresis. Proc. IEEE 1984, 72, 197–221. [Google Scholar] [CrossRef]
- Jordan, H. Die ferromagnetischen konstanten fur schwache wechselfelder. Elektr. Nach. Techn. 1924, 1, 8. [Google Scholar]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Jia, W.; Xiao, L.; Zhu, D. Core-loss analysis of high-speed doubly salient electromagnetic machine for aeronautic starter/generator application. IEEE Trans. Ind. Electron. 2020, 67, 59–68. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, B. Modeling of PWM-induced iron losses with frequency-domain methods and low-frequency parameters. IEEE Trans. Ind. Electron. 2022, 69, 2402–2413. [Google Scholar] [CrossRef]
- Ionel, D.M.; Popescu, M.; McGilp, M.I.; Miller, T.J.E.; Dellinger, S.J.; Heideman, R.J. Computation of core losses in electrical machines using improved models for laminated steel. IEEE Trans. Ind. Appl. 2007, 43, 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Krings, A.; Soulard, J. Overview and Comparison of Iron Loss Models for Electrical Machines. J. Electr. Eng. 2010, 10, 162–169. [Google Scholar]
- Popescu, M.; Ionel, D.M.; Boglietti, A.; Cavagnino, A.; Cossar, C.; McGilp, M.I. A general model for estimating the laminated steel losses under pwm voltage supply. IEEE Trans. Ind. Appl. 2010, 46, 1389–1396. [Google Scholar] [CrossRef]
- Haisen, Z.; Dongdong, Z.; Yilong, W.; Yang, Z.; Guorui, X. Piecewise variable parameter loss model of laminated steel and its application in fine analysis of iron loss of inverter-fed induction motors. IEEE Trans. Ind. Appl. 2018, 54, 832–840. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P. Core loss estimation for an inverter-fed induction motor with more accurate realisation of material non-linearity and impact of hysteresis minor loops. IEEE Trans. Energy Convers. 2022, 37, 327–336. [Google Scholar] [CrossRef]
- Bi, L.; Schäfer, U.; Hu, Y. A new high-frequency iron loss model including additional iron losses due to punching and burrs’ connection. IEEE Trans. Magn. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Petrun, M.; Steentjes, S. Iron-loss and magnetization dynamics in non-oriented electrical steel: 1-d excitations up to high frequencies. IEEE Access 2020, 8, 4568–4593. [Google Scholar] [CrossRef]
- Cheng, L.; Sudo, S.; Gao, Y.; Dozono, H.; Muramatsu, K. Homogenization technique of laminated core taking account of eddy currents under rotational flux without edge effect. IEEE Trans. Magn. 2013, 49, 1969–1972. [Google Scholar] [CrossRef]
- Hofmann, M.J.; Herzog, H.-G. Modeling magnetic power losses in electrical steel sheets in respect of arbitrary alternating induction waveforms: Theoretical considerations and model synthesis. IEEE Trans. Magn. 2015, 51, 1–11. [Google Scholar] [CrossRef]
- Gyselinck, J.; Vandevelde, L.; Melkebeek, J.; Dular, P.; Henrotte, F.; Legros, W. Calculation of eddy currents and associated losses in electrical steel laminations. IEEE Trans. Magn. 1999, 35, 1191–1194. [Google Scholar] [CrossRef]
- Gyselinck, J.; Sabariego, R.V.; Dular, P. A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite-element models. IEEE Trans. Magn. 2006, 42, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Dems, M.; Komeza, K. The influence of electrical sheet on the core losses at no-load and full-load of small power induction motors. IEEE Trans. Ind. Electron. 2017, 64, 2433–2442. [Google Scholar] [CrossRef]
- Biasion, M.; Peixoto, I.S.P.; Fernandes, J.F.P.; Vaschetto, S.; Bramerdorfer, G.; Cavagnino, A. Iron Loss Characterization in Laminated Cores at Room and Liquid Nitrogen Temperature. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Komeza, K.; Dems, M.; Szulakowski, J.; Kubiak, W. Modeling of core loss for non-oriented electrical steel. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 1874–1884. [Google Scholar] [CrossRef]
- Dems, M.; Komeza, K.; Gmyrek, Z.; Szulakowski, J. The Effect of Sample’s Dimension and Cutting Technology on Magnetization and Specific Iron Losses of FeSi Laminations. Energies 2022, 15, 2086. [Google Scholar] [CrossRef]
- Gmyrek, Z.; Cavagnino, A.; Ferraris, L. Estimation of the magnetic properties of the damaged area resulting from the punching process: Experimental research and fem modeling. IEEE Trans. Ind. Appl. 2013, 49, 2069–2077. [Google Scholar] [CrossRef]
- Füzer, J.; Dobák, S.; Petryshynets, I.; Kollár, P.; Kováč, F.; Slota, J. Correlation between Cutting Clearance, Deformation Texture, and Magnetic Loss Prediction in Non-Oriented Electrical Steels. Materials 2021, 14, 6893. [Google Scholar] [CrossRef] [PubMed]
Sample Widths (mm) | kh (10−2) | α | ke (10−4) | β |
---|---|---|---|---|
4 | 2.64 | 1.82 | 1.96 | 2.00 |
5 | 2.17 | 1.70 | 3.06 | 2.12 |
7 | 1.47 | 1.52 | 4.60 | 2.28 |
10 | 1.09 | 1.40 | 5.28 | 2.31 |
Sample Widths (mm) | kh (10−2) | α | ke (10−4) | β |
---|---|---|---|---|
4 | 2.71 | 1.06 | 2.43 | 2.00 |
5 | 2.67 | 1.06 | 2.38 | 1.89 |
7 | 2.59 | 1.09 | 2.26 | 1.77 |
10 | 2.41 | 1.16 | 2.01 | 1.79 |
Sample Widths (mm) | kh (10−2) | α | ke (10−4) | β |
---|---|---|---|---|
4 | 8.18 | 1.85 | 0.413 | 1.992 |
5 | 7.29 | 1.83 | 0.406 | 1.966 |
7 | 6.15 | 1.86 | 0.381 | 1.932 |
10 | 6.03 | 1.81 | 0.319 | 1.927 |
20 | 5.34 | 1.79 | 0.298 | 1.921 |
60 | 4.93 | 1.78 | 0.286 | 1.918 |
Sample Widths (mm) | kh (10−2) | α | ke (10−4) | β |
---|---|---|---|---|
4 | 11.36 | 1.69 | 0.651 | 2.049 |
5 | 10.21 | 1.68 | 0.593 | 1.997 |
7 | 8.46 | 1.64 | 0.499 | 1.951 |
10 | 7.20 | 1.49 | 0.415 | 2.027 |
20 | 6.34 | 1.58 | 0.354 | 1.985 |
60 | 5.32 | 1.70 | 0.299 | 1.929 |
Frequency [Hz] | Flux Density [T] | Specific Losses for Sample Widths = 10 mm [W/kg] | Specific Losses for Sample Widths = 60 mm [W/kg] | ||||
---|---|---|---|---|---|---|---|
Measured | Approximated | Error [%] | Measured | Approximated | Error [%] | ||
10 | 1.4 | 0.3635 | 0.3564 | 1.95 | 0.3144 | 0.3019 | 3.95 |
50 | 1.4 | 2.4953 | 2.4692 | 1.05 | 2.0838 | 2.0943 | −0.50 |
100 | 1.4 | 5.8647 | 6.0438 | −3.05 | 4.9967 | 4.9704 | 0.53 |
200 | 1.2 | 11.3984 | 11.1024 | 2.60 | 9.4816 | 9.3090 | 1.82 |
500 | 1.2 | 44.5892 | 43.7880 | 1.80 | 38.4084 | 37.5700 | 2.18 |
1000 | 0.6 | 34.6830 | 35.8368 | −3.46 | 29.5318 | 29.2622 | 0.91 |
2000 | 0.5 | 70.9134 | 71.0834 | −0.24 | 61.2496 | 61.3573 | −0.18 |
4000 | 0.3 | 76.9264 | 77.3911 | −0.60 | 68.1426 | 68.5557 | −0.61 |
Frequency [Hz] | Flux Density [T] | Specific Losses for Sample Widths = 10 mm [W/kg] | Specific Losses for Sample Widths = 60 mm [W/kg] | ||||
---|---|---|---|---|---|---|---|
Measured | Approximated | Error [%] | Measured | Approximated | Error [%] | ||
10 | 1.4 | 0.4221 | 0.4175 | 1.09 | 0.3309 | 0.3282 | 0.82% |
50 | 1.4 | 2.9287 | 2.9365 | −0.27 | 2.2125 | 2.2384 | −1.17 |
100 | 1.4 | 6.9318 | 6.9457 | −0.20 | 5.2760 | 5.2426 | 0.63 |
200 | 1.2 | 13.8982 | 13.6054 | 2.11 | 10.1718 | 10.0556 | 1.14 |
500 | 1.2 | 50.1598 | 50.2049 | −0.09 | 39.9924 | 39.5264 | 1.17 |
1000 | 0.6 | 47.2180 | 48.3642 | −2.43 | 32.5832 | 33.5303 | −2.91 |
2000 | 0.5 | 95.7118 | 92.0008 | 3.88 | 65.802 | 64.2697 | 2.33 |
4000 | 0.3 | 105.7260 | 105.7494 | −0.02 | 73.9746 | 74.5607 | 0.79 |
Frequency [Hz] | Flux Density [T] | Sample Width = 4 mm | Sample Width = 10 mm | Sample Width = 60 mm | |||
---|---|---|---|---|---|---|---|
Guillotine Cutting | Laser Cutting | Guillotine Cutting | Laser Cutting | Guillotine Cutting | Laser Cutting | ||
50 | 1.0 | 1.68 | 2.02 | 1.23 | 1.75 | 1.01 | 1.15 |
300 | 1.0 | 1.50 | 1.87 | 1.21 | 1.60 | 1.03 | 1.12 |
1000 | 0.5 | 1.54 | 2.35 | 1.21 | 1.73 | 1.04 | 1.16 |
4000 | 0.25 | 1.34 | 2.16 | 1.17 | 1.64 | 1.04 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dems, M.; Komeza, K.; Szulakowski, J. Practical Approximation of Sheet Losses Taking into Account the Guillotine and Laser Cutting Effect. Energies 2023, 16, 2831. https://doi.org/10.3390/en16062831
Dems M, Komeza K, Szulakowski J. Practical Approximation of Sheet Losses Taking into Account the Guillotine and Laser Cutting Effect. Energies. 2023; 16(6):2831. https://doi.org/10.3390/en16062831
Chicago/Turabian StyleDems, Maria, Krzysztof Komeza, and Jacek Szulakowski. 2023. "Practical Approximation of Sheet Losses Taking into Account the Guillotine and Laser Cutting Effect" Energies 16, no. 6: 2831. https://doi.org/10.3390/en16062831
APA StyleDems, M., Komeza, K., & Szulakowski, J. (2023). Practical Approximation of Sheet Losses Taking into Account the Guillotine and Laser Cutting Effect. Energies, 16(6), 2831. https://doi.org/10.3390/en16062831