Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall
Abstract
:1. Introduction
2. Methodology
2.1. Hydrodynamic Model
2.2. Equation of Motion
2.3. Extracted Wave Power
2.4. PTO Damping
2.5. Cost Indicator
3. Numerical Results and Discussion
3.1. Validation
3.1.1. Validation of Hydrodynamic Parameters
3.1.2. Validation of CFD Simulation
3.2. Modeling Parameters
3.3. Viscous Damping
3.4. Extracted Power and Cost Indicator
3.5. Ranking of a Cost-Effective Array of WECs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hannah Ritchie and Max Roser, Emissions by Sector. Available online: https://ourworldindata.org/emissions-by-sector (accessed on 16 November 2023).
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- McCormick, M.E. Ocean Wave Energy Conversion; Dover Publication Inc.: New York, NY, USA, 2007; Chapter 1. [Google Scholar]
- Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45, 397–408. [Google Scholar] [CrossRef]
- Lyu, J.; Abdelkhalik, O.; Gauchia, L. Optimization of dimensions and layout of an array of wave energy converters. Ocean Eng. 2019, 192, 106543. [Google Scholar] [CrossRef]
- Zhong, Q.; Yeung, R.W. On optimal energy-extraction performance of arrays of wave-energy converters, with full consideration of wave and multi-body interactions. Ocean Eng. 2022, 250, 110863. [Google Scholar] [CrossRef]
- Guo, B.; Ringwood, J.V. Geometric optimisation of wave energy conversion devices: A survey. Appl. Energy 2021, 297, 117100. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; Forehand, D.I.M. A review of geometry optimisation of wave energy converters. Renew. Sustain. Energy Rev. 2021, 139, 110593. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Rosa-Santos, P.; Taveira-Pinto, F. Hydrodynamic optimization of the geometry of a sloped-motion wave energy converter. Ocean Eng. 2020, 199, 107046. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Hu, Z.; Deng, J.; Xiao, P.; Chen, M. Research on Size Optimization ofWave Energy Converters Based on a Floating Wind-Wave Combined Power Generation Platform. Energies 2022, 15, 8681. [Google Scholar] [CrossRef]
- Sun, P.; Hu, S.; He, H.; Zheng, S.; Chen, H.; Yang, S.; Ji, Z. Structural optimization on the oscillating-array-buoys for energy-capturing enhancement of a novel floating wave energy converter system. Energy Convers. Manag. 2021, 228, 113693. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Al-Raoush, R.I.; Alamdari, N.; Gandomi, A.H. The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential. Energies 2022, 15, 7734. [Google Scholar] [CrossRef]
- Sheng, W.; Lewis, A. Power takeoff optimization for maximizing energy conversion of wave-activated bodies. IEEE J. Ocean. Eng. 2016, 41, 529–540. [Google Scholar] [CrossRef]
- Loukogeorgaki, E.; Chatjigeorgiou, I.K. Hydrodynamic performance of an array of truncated cylinders in front of a vertical wall. Ocean Eng. 2019, 189, 106407. [Google Scholar] [CrossRef]
- Zhao, X.L.; Ning, D.Z.; Liang, D.F. Experimental investigation on hydrodynamic performance of a breakwater-integrated WEC system. Ocean Eng. 2019, 171, 25–32. [Google Scholar] [CrossRef]
- Zhang, C.; Ning, D. Hydrodynamic study of a novel breakwater with parabolic openings for wave energy harvest. Ocean Eng. 2019, 182, 540–551. [Google Scholar] [CrossRef]
- Konispoliatis, D.N.; Mavrakos, S.A.; Katsaounis, G.M. Theoretical evaluation of the hydrodynamic characteristics of arrays of vertical axisymmetric floaters of arbitrary shape in front of a vertical breakwater. J. Mar. Sci. Eng. 2020, 8, 62. [Google Scholar] [CrossRef]
- Konispoliatis, D.N.; Mavrakos, S.A. Wave power absorption by arrays of wave energy converters in front of a vertical breakwater: A theoretical study. Energies 2020, 13, 1985. [Google Scholar] [CrossRef]
- Konispoliatis, D.N.; Mavrakos, S.A. Hydrodynamic efficiency of a wave energy converter in front of an orthogonal breakwater. J. Mar. Sci. Eng. 2021, 9, 94. [Google Scholar] [CrossRef]
- Kara, F. Hydrodynamic performances of wave energy converter arrays in front of a vertical wall. Ocean Eng. 2021, 235, 109459. [Google Scholar] [CrossRef]
- Kara, F. Effects of a vertical wall on wave power absorption with wave energy converters arrays. Renew. Energy 2022, 196, 812–823. [Google Scholar] [CrossRef]
- Sirigu, S.A.; Foglietta, L.; Giorgi, G.; Bonfanti, M.; Cervelli, G.; Bracco, G.; Mattiazzo, G. Techno-Economic optimisation for a wave energy converter via genetic algorithm. J. Mar. Sci. Eng. 2020, 8, 482. [Google Scholar] [CrossRef]
- Tan, J.; Polinder, H.; Laguna, A.J.; Wellens, P.; Miedema, S.A. The influence of sizing of wave energy converters on the techno-economic performance. J. Mar. Sci. Eng. 2021, 9, 52. [Google Scholar] [CrossRef]
- Têtu, A.; Fernandez Chozas, J. A proposed guidance for the economic assessment of wave energy converters at early development stages. Energies 2021, 14, 4699. [Google Scholar] [CrossRef]
- Giglio, E.; Petracca, E.; Paduano, B.; Moscoloni, C.; Giorgi, G.; Sirigu, S.A. Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach. Sustainability 2023, 15, 6756. [Google Scholar] [CrossRef]
- He, Z.; Ning, D.; Gou, Y.; Zhou, Z. Wave energy converter optimization based on differential evolution algorithm. Energy 2022, 246, 123433. [Google Scholar] [CrossRef]
- Babarit, A. Impact of long separating distances on the energy production of two interacting wave energy converters. Ocean Eng. 2010, 37, 718–729. [Google Scholar] [CrossRef]
- Cho, I.H.; Kim, M.H. Hydrodynamic performance evaluation of a wave energy converter with two concentric vertical cylinders by analytic solutions and model tests. Ocean Eng. 2017, 130, 498–509. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Hu, J.J.; Sun, K.; Liu, Y.; Collu, M. Motion response and energy conversion performance of a heaving point absorber wave energy converter. Front. Energy Res. 2020, 8, 553295. [Google Scholar] [CrossRef]
- Natarajan, S.K.; Cho, I. New Strategy on Power Absorption of a Concentric Two-Body Wave Energy Converter. Energies 2023, 16, 3791. [Google Scholar] [CrossRef]
- Goda, Y. Statistical variability of sea state parameters as a function of a wave spectrum. Coast. Eng. Jpn. 1988, 31, 39–52. [Google Scholar] [CrossRef]
- Bhattacharyya, R. Dynamics of Marine Vehicles; John Wiley & Sons Incorporated: Hoboken, NJ, USA, 1978; Chapter 6. [Google Scholar]
- Newman, J.N. Marine Hydrodynamics, 40th Anniversary ed.; The MIT Press: London, UK, 2018; Chapter 6. [Google Scholar]
D (m) | N | L | Case | (kW) | (kNs/m) | (kW) | Cost Indicator (m3/kW) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Opt | Max | Opt | Max | Opt | Max | Opt | Max | |||||
2 | 1 | - | 1 | WEC1 | 1.01 | 3.40 | 0.23 | 3.00 | 1.01 | 3.40 | 17.23 | 5.13 |
3 | 2D | 2 | WEC1 WEC2 WEC3 | 1.01 0.95 1.01 | 3.41 3.32 3.41 | 0.23 0.22 0.23 | 3.00 3.00 3.00 | 2.96 | 10.15 | 17.66 | 5.15 | |
5D | 3 | WEC1 WEC2 WEC3 | 1.05 1.08 1.05 | 3.50 3.55 3.50 | 0.24 0.24 0.24 | 3.00 3.00 3.00 | 3.18 | 10.55 | 16.46 | 4.96 | ||
5 | 2D | 4 | WEC1 WEC2 WEC3 WEC4 WEC5 | 1.06 1.01 1.00 1.01 1.06 | 3.56 3.46 3.44 3.46 3.56 | 0.23 0.23 0.23 0.23 0.23 | 2.90 3.00 3.00 3.00 2.90 | 5.14 | 17.48 | 16.98 | 4.99 | |
5D | 5 | WEC1 WEC2 WEC3 WEC4 WEC5 | 1.03 1.07 1.09 1.07 1.03 | 3.45 3.53 3.60 3.53 3.45 | 0.24 0.24 0.24 0.24 0.24 | 3.00 3.00 2.90 3.00 3.00 | 5.30 | 17.56 | 16.46 | 4.96 | ||
3 | 1 | - | 6 | WEC1 | 2.00 | 5.82 | 0.88 | 8.90 | 2.00 | 5.82 | 18.57 | 6.37 |
3 | 2D | 7 | WEC1 WEC2 WEC3 | 2.21 2.19 2.21 | 6.18 5.96 6.18 | 0.92 0.96 0.92 | 8.80 8.90 8.80 | 6.62 | 18.32 | 16.83 | 6.08 | |
5D | 8 | WEC1 WEC2 WEC3 | 2.00 2.11 2.00 | 5.94 6.36 5.94 | 0.86 0.84 0.86 | 8.90 8.80 8.90 | 6.11 | 18.24 | 18.23 | 6.10 | ||
5 | 2D | 9 | WEC1 WEC2 WEC3 WEC4 WEC5 | 2.26 2.40 2.49 2.40 2.26 | 6.31 6.48 6.66 6.48 6.31 | 0.92 0.96 0.97 0.96 0.92 | 8.80 8.80 8.80 8.80 8.80 | 11.81 | 32.25 | 15.71 | 5.75 | |
5D | 10 | WEC1 WEC2 WEC3 WEC4 WEC5 | 2.05 2.10 2.00 2.10 2.05 | 6.01 6.27 6.05 6.27 6.01 | 0.87 0.84 0.84 0.84 0.87 | 8.80 8.80 8.90 8.80 8.80 | 10.30 | 30.61 | 18.02 | 6.06 | ||
4 | 1 | - | 11 | WEC1 | 4.00 | 9.02 | 2.45 | 17.50 | 4.00 | 9.02 | 15.70 | 6.96 |
3 | 2D | 12 | WEC1 WEC2 WEC3 | 4.72 5.13 4.72 | 10.23 10.29 10.23 | 2.57 2.87 2.57 | 17.40 17.50 17.40 | 14.57 | 30.75 | 12.94 | 6.13 | |
5D | 13 | WEC1 WEC2 WEC3 | 3.94 4.05 3.94 | 9.21 9.64 9.21 | 2.34 2.27 2.34 | 17.50 17.40 17.50 | 11.94 | 28.07 | 15.79 | 6.72 | ||
5 | 2D | 14 | WEC1 WEC2 WEC3 WEC4 WEC5 | 4.46 5.31 5.60 5.31 4.46 | 9.67 10.78 11.67 10.78 9.67 | 2.60 2.82 2.70 2.82 2.60 | 17.60 17.40 17.20 17.40 17.60 | 25.13 | 52.55 | 12.50 | 5.98 | |
5D | 15 | WEC1 WEC2 WEC3 WEC4 WEC5 | 3.98 3.95 3.86 3.95 3.98 | 9.25 9.54 9.42 9.54 9.25 | 2.35 2.24 2.21 2.24 2.35 | 17.50 17.50 17.50 17.50 17.50 | 19.74 | 47.00 | 15.92 | 6.68 |
D (m) | N | L | Case | (kW) | (kNs/m) | (kW) | Cost Indicator (m3/kW) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Opt | Max | Opt | Max | Opt | Max | Opt | Max | |||||
2 | 1 | - | 1 | WEC1 | 4.50 | 12.21 | 0.31 | 3.00 | 4.50 | 12.21 | 3.87 | 1.43 |
3 | 2D | 2 | WEC1 WEC2 WEC3 | 4.91 4.67 4.91 | 12.66 12.20 12.66 | 0.33 0.32 0.33 | 3.00 3.00 3.00 | 14.48 | 37.54 | 3.61 | 1.39 | |
5D | 3 | WEC1 WEC2 WEC3 | 4.86 5.25 4.86 | 12.94 13.38 12.94 | 0.31 0.33 0.31 | 2.90 2.90 2.90 | 14.97 | 39.26 | 3.49 | 1.33 | ||
5 | 2D | 4 | WEC1 WEC2 WEC3 WEC4 WEC5 | 5.31 5.36 5.48 5.36 5.31 | 13.75 13.40 13.34 13.40 13.75 | 0.33 0.34 0.35 0.34 0.33 | 2.90 3.00 3.00 3.00 2.90 | 26.82 | 67.64 | 3.25 | 1.29 | |
5D | 5 | WEC1 WEC2 WEC3 WEC4 WEC5 | 4.73 5.13 5.24 5.13 4.73 | 12.58 13.20 13.71 13.20 12.58 | 0.32 0.33 0.32 0.33 0.32 | 3.00 3.00 2.90 3.00 3.00 | 24.95 | 65.27 | 3.49 | 1.34 | ||
3 | 1 | - | 6 | WEC1 | 9.46 | 18.78 | 1.46 | 8.90 | 9.46 | 18.78 | 3.92 | 1.98 |
3 | 2D | 7 | WEC1 WEC2 WEC3 | 12.20 12.60 12.20 | 22.26 21.93 22.26 | 1.64 1.78 1.64 | 8.70 8.80 8.70 | 37.01 | 66.44 | 3.01 | 1.68 | |
5D | 8 | WEC1 WEC2 WEC3 | 9.74 10.69 9.74 | 19.39 21.84 19.39 | 1.46 1.39 1.46 | 8.90 8.80 8.90 | 30.18 | 60.61 | 3.69 | 1.84 | ||
5 | 2D | 9 | WEC1 WEC2 WEC3 WEC4 WEC5 | 12.26 14.64 16.42 14.64 12.26 | 22.81 25.61 27.39 25.61 22.81 | 1.59 1.74 1.86 1.74 1.59 | 8.70 8.60 8.60 8.60 8.70 | 70.22 | 124.23 | 2.64 | 1.49 | |
5D | 10 | WEC1 WEC2 WEC3 WEC4 WEC5 | 10.20 10.55 9.56 10.55 10.20 | 19.86 21.29 19.82 21.29 19.86 | 1.50 1.42 1.39 1.42 1.50 | 8.80 8.70 9.00 8.70 8.80 | 51.07 | 102.11 | 3.63 | 1.82 | ||
4 | 1 | - | 11 | WEC1 | 15.75 | 24.79 | 4.19 | 17.50 | 15.75 | 24.79 | 3.99 | 2.53 |
3 | 2D | 12 | WEC1 WEC2 WEC3 | 21.93 28.37 21.93 | 32.50 36.44 32.50 | 4.54 5.85 4.54 | 17.00 16.50 17.00 | 72.23 | 101.43 | 2.61 | 1.86 | |
5D | 13 | WEC1 WEC2 WEC3 | 14.84 14.93 14.84 | 24.93 26.46 24.93 | 3.79 3.50 3.79 | 17.60 17.70 17.60 | 44.62 | 76.32 | 4.22 | 2.47 | ||
5 | 2D | 14 | WEC1 WEC2 WEC3 WEC4 WEC5 | 19.27 28.16 29.49 28.16 19.27 | 28.62 37.22 41.90 37.22 28.62 | 4.65 5.59 4.84 5.59 4.65 | 17.60 16.80 16.70 16.80 17.60 | 124.35 | 173.59 | 2.53 | 1.81 | |
5D | 15 | WEC1 WEC2 WEC3 WEC4 WEC5 | 15.25 14.28 13.49 14.28 15.25 | 25.16 25.92 25.15 25.92 25.16 | 3.88 3.39 3.26 3.39 3.88 | 17.60 17.80 17.80 17.80 17.60 | 72.55 | 127.30 | 4.33 | 2.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarajan, S.K.; Cho, I.H. Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall. Energies 2024, 17, 128. https://doi.org/10.3390/en17010128
Natarajan SK, Cho IH. Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall. Energies. 2024; 17(1):128. https://doi.org/10.3390/en17010128
Chicago/Turabian StyleNatarajan, Senthil Kumar, and Il Hyoung Cho. 2024. "Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall" Energies 17, no. 1: 128. https://doi.org/10.3390/en17010128
APA StyleNatarajan, S. K., & Cho, I. H. (2024). Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall. Energies, 17(1), 128. https://doi.org/10.3390/en17010128