Does Climate Change and Energy Consumption Affect the Food Security of European Union Countries? Empirical Evidence from a Panel Study
Abstract
:1. Introduction
- Economic growth and the volume of cereal production per hectare.
- The size of the area under cereal crops and the size of their yields.
- Temperature, rainfall, and cereal production per hectare.
- CO2 emissions and cereal yields.
- Energy and renewable energy consumption and cereal production per hectare.
2. Literature Review
2.1. Food Security and Cereal Production in Europe
- (1)
- Physical availability of food;
- (2)
- Economic availability of food;
- (3)
- Adequate diet quality and food safety;
- (4)
- Stabilisation.
- –
- Food supply: Cereals represent a significant proportion of the diet for many Europeans. The high cereal yield means more food can be produced, which can help ensure food security in Europe and globally.
- –
- Food prices: High cereal yields can lower food prices, improve food availability for low-income people, and encourage livestock production development.
- –
- Food instability: High cereal yields can help to reduce food security instability, which is caused by a few factors, including droughts, floods, and military conflict, as well as health risks associated with a pandemic that has disrupted supply chains.
2.2. Using Econometric Methods to Explore the Relationship between Climate Change Impacts and Global Cereal Production
3. Materials and Methods
3.1. Data
3.2. Econometric Framework
4. Results
4.1. Pre-Estimation Data Tests
4.2. Estimation Results
- –
- Economic growth translates into higher yields—an increase in GDP per capita of around 1% results in a 0.3% increase in cereal yields per hectare;
- –
- The increase in the area under cereal crops determines the increase in cereal yields to a small extent.
- –
- An increase in air temperature can result in heat stress for plants, which may subsequently lead to a reduction in yield;
- –
- Alterations in the distribution of precipitation, which can result in drought or flooding and which can also have a detrimental impact on crop yields;
- –
- A notable increase in the frequency and intensity of extreme weather events, including storms, hurricanes, tornadoes, droughts, floods, and mudslides, has been observed, with a concomitant rise in the extent of crop damage.
- —
- Solar power: used to power irrigation systems, greenhouses, and farm buildings. Individual energy production also allows you to benefit from preferential energy purchases.
- —
- Wind power: generates electricity for farm operations, especially in windy areas, and provides an additional source of income from land leasing.
- —
- Biomass energy: converts agricultural waste into biogas for heating and electricity. It allows you to obtain energy on your own as well as sell agricultural waste to other biogas plants.
- —
- Geothermal energy: heats greenhouses and dries crops, enhancing yields in cooler climates.
5. Discussion
6. Conclusions
- –
- The influence of economic growth on cereal production is more pronounced in low-yielding countries. In contrast, developing economies facilitate the production of higher yields in agriculture.
- –
- The expansion of cultivated area exerts the most pronounced influence in countries with low crop yields, whereas, in countries with high yields, it has no discernible impact on the volume of cereal production per hectare.
- –
- It has been confirmed that precipitation significantly influences crop yields in countries with low and moderate cereal production per hectare. Conversely, precipitation has relatively few consequences in countries with high cereal yields. It is attributed to the presence of more advanced irrigation systems and crop technology, which serve to mitigate the impact of precipitation on yields.
- –
- In high-yielding countries, temperature has a high and positive impact on crops. Conversely, in low-yielding countries, a lower positive impact is observed regarding cereal production. Expanding energy consumption and integrating renewable energy sources into agricultural practices present a more formidable challenge for countries with low and moderate crop yields.
- –
- The increase in CO2 will have the most rapid effect on cereal production in countries with moderate crop yields.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Group | Countries |
---|---|
High-yielding countries (average yield over 6000 kg/ha) | Netherlands; Ireland; France; Germany; Denmark; Austria |
Medium-yielding countries (average yield between 4000 and 6000 kg/ha) | Croatia; Italy; Czech Republic; Sweden; Hungary; Slovakia |
Low-yielding countries (average yield less than 4000 kg/ha) | Greece; Portugal; Finland; Romania; Poland; Spain; Lithuania; Latvia; Estonia |
References
- Tecau, A.S.; Dimitriu, C.; Marinescu, N.; Tescasiu, B.; Epuran, G. A Qualitative Research on the Food Security of School Children in the Rural Area. Sustainability 2020, 12, 9024. [Google Scholar] [CrossRef]
- World Health Organization. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum; Food & Agriculture Organization: 2023. Available online: https://www.who.int/publications/m/item/the-state-of-food-security-and-nutrition-in-the-world-2023 (accessed on 18 June 2024).
- Kalinowski, S. Problem ubóstwa i wykluczenia społecznego w krajach Unii Europejskiej w kontekście zrównoważonego rozwoju. Wieś Rol. 2018, 180, 93–112. [Google Scholar] [CrossRef] [PubMed]
- Figiel, S.; Floriańczyk, Z.; Wigier, M. Impact of the COVID-19 Pandemic on the World Energy and Food Commodity Prices: Implications for Global Economic Growth. Energies 2023, 16, 3152. [Google Scholar] [CrossRef]
- Jagtap, S.; Trollman, H.; Trollman, F.; Garcia-Garcia, G.; Parra-López, C.; Duong, L.; Martindale, W.; Munekata, P.E.S.; Lorenzo, J.M.; Hdaifeh, A.; et al. The Russia-Ukraine Conflict: Its Implications for the Global Food Supply Chains. Foods 2022, 11, 2098. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Ben Hassen, T.; El Bilali, H.; Raheem, D.; Raposo, A. Food Security Challenges in Europe in the Context of the Prolonged Russian–Ukrainian Conflict. Sustainability 2023, 15, 4745. [Google Scholar] [CrossRef]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of Extreme Weather Conditions on European Crop Production in 2018. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190510. [Google Scholar] [CrossRef] [PubMed]
- Hristov, J.; Domínguez, I.P.; Fellmann, T.; Elleby, C. Economic Impacts of Climate Change on EU Agriculture: Will the Farmers Benefit from Global Climate Change? Environ. Res. Lett. 2023, 19, 014027. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of Climate Change on Agricultural Production; Issues, Challenges, and Opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Rydgren, K.; Bakkestuen, V.; Gillespie, M.A.K. Impacts of Recent Climate Change on Crop Yield Can Depend on Local Conditions in Climatically Diverse Regions of Norway. Sci. Rep. 2023, 13, 3633. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate Change Impacts on Crop Yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Nepal, M.; Ashfaq, M.; Sharma, B.R.; Shrestha, M.S.; Khadgi, V.R.; Bruno Soares, M. Impact of Weather and Climate Advisories on Agricultural Outcomes in Pakistan. Sci. Rep. 2024, 14, 1036. [Google Scholar] [CrossRef]
- Aljohani, E.S.; Chidmi, B. Analyzing Technical Efficiency in Cereal Production across Selected European Union Countries. Sustainability 2024, 16, 546. [Google Scholar] [CrossRef]
- Obiedzińska, A. Wybrane aspekty zapewnienia bezpieczeństwa żywnościowego w Unii Europejskiej. Stud. BAS 2016, 123–161. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: 2014. Available online: https://epic.awi.de/id/eprint/37530/ (accessed on 18 June 2024).
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Rolnictwo a Klimat. Zmiana Klimatu-Skutki Dla Pol. Społeczeństwa Gospod. 2020. Available online: https://publikacje.pan.pl/chapter/119769/strona-tytulowa-i-redakcyjna-br (accessed on 18 June 2024).
- Michalak, D.; Rydz-Żbikowska, A. Jakie działania są niezbędne dla sprostania wyzwaniom zielonego ładu i uczynienia go szansą dla polskiego rolnictwa? In W Poszukiwaniu Zielonego Ładu; Wydawnictwo Uniwersytetu Łódzkiego: 2022; ISBN 978-83-8220-870-2. Available online: https://dspace.uni.lodz.pl/handle/11089/43848?show=full (accessed on 18 June 2024).
- Greenhouse Gas Emissions from Agriculture in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-agriculture (accessed on 28 April 2024).
- Kowalska, A. Wyzwania Związane z Bezpieczeństwem Żywnościowym. Available online: https://www.umcs.pl/pl/aktualnosci,54,wyzwania-zwiazane-z-bezpieczenstwem-zywnosciowym-komentarz-ekspercki-dr-hab-aleksandry-kowalskiej-prof-umcs,120561.chtm (accessed on 28 April 2024).
- Zhang, T.; Wiel, K.v.d.; Wei, T.; Screen, J.; Yue, X.; Zheng, B.; Selten, F.; Bintanja, R.; Anderson, W.; Blackport, R.; et al. Increased Wheat Price Spikes and Larger Economic Inequality with 2 °C Global Warming. One Earth 2022, 5, 907–916. [Google Scholar] [CrossRef]
- Beckman, J.; Ivanic, M.; Jelliffe, J.L.; Baquedano, F.G.; Scott, S.G. Economic and Food Security Impacts of Agricultural Input Reduction under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies. 2020. Available online: https://ageconsearch.umn.edu/record/307277?ln=en&v=pdf (accessed on 18 June 2024).
- Nordhaus, W. The Climate Casino: Risk, Uncertainty, and Economics for a Warming World; Yale University Press: 2013; ISBN 978-0-300-18977-3. Available online: https://www.researchgate.net/publication/269418412_The_Climate_Casino_Risk_Uncertainty_and_Economics_for_a_Warming_World (accessed on 18 June 2024).
- World Health Organization. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; Food & Agriculture Organization: 2022. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/67b1e9c7-1a7f-4dc6-a19e-f6472a4ea83a/content (accessed on 18 June 2024).
- Borch, A.; Kjærnes, U. Food Security and Food Insecurity in Europe: An Analysis of the Academic Discourse (1975–2013). Appetite 2016, 103, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, A.; Ambuko, J.; Belik, W.; Huang, J. Food Losses and Waste in the Context of Sustainable Food Systems. 2014. Available online: https://research.wur.nl/en/publications/food-losses-and-waste-in-the-context-of-sustainable-food-systems (accessed on 18 June 2024).
- Szczepaniak, I. Ocena bezpieczeństwa żywnościowego i samowystarczalności żywnościowej Polski na tle państw Unii Europejskiej. Int. Bus. Glob. Econ. 2018, 37, 168–182. [Google Scholar] [CrossRef]
- Anderson, K. Krueger, Schiff, and Valdés Revisited: Agricultural Price and Trade Policy Reform in Developing Countries since 1960. Appl. Econ. Perspect. Policy 2010, 32, 195–231. [Google Scholar] [CrossRef]
- Olper, A.; Curzi, D.; Swinnen, J. Trade Liberalization and Child Mortality: A Synthetic Control Method. World Dev. 2018, 110, 394–410. [Google Scholar] [CrossRef]
- Dithmer, J.; Abdulai, A. Does Trade Openness Contribute to Food Security? A Dynamic Panel Analysis. Food Policy 2017, 69, 218–230. [Google Scholar] [CrossRef]
- Wacziarg, R.; Welch, K.H. Trade Liberalization and Growth: New Evidence. World Bank Econ. Rev. 2008, 22, 187–231. [Google Scholar] [CrossRef]
- Fusco, G.; Coluccia, B.; De Leo, F. Effect of Trade Openness on Food Security in the EU: A Dynamic Panel Analysis. Int. J. Environ. Res. Public. Health 2020, 17, 4311. [Google Scholar] [CrossRef]
- Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth 2022, 3, 45–71. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Agriculture and Rural Development. In EU Agricultural Outlook 2023–2035; Publications Office: Luxembourg, 2023. [Google Scholar]
- Wang, J.; Vanga, S.K.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Akter, N.; Rafiqul Islam, M. Heat Stress Effects and Management in Wheat. A Review. Agron. Sustain. Dev. 2017, 37, 37. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–34. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 18 June 2024).
- Hristov, J.; Toreti, A.; Pérez Domínguez, I.; Dentener, F.; Fellmann, T.; Elleby, C.; Ceglar, A.; Fumagalli, D.; Niemeyer, S.; Cerrani, I.; et al. Analysis of Climate Change Impacts on EU Agriculture by 2050; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Popescu, A.; Stanciu, M.; Şerban, V.; Ciocan, H.N. Cereals Production and Price in the European Union. 2022. Available online: https://managementjournal.usamv.ro/pdf/vol.22_4/Art62.pdf (accessed on 18 June 2024).
- Matyjaszczyk, E. Comparison between Seed and Foliar Treatment as a Tool in Integrated Pest Management. J. Agric. Food Chem. 2017, 65, 6081–6086. [Google Scholar] [CrossRef]
- Verma, D.; Singh, H.; Meena, G. Factors Affecting Production of Cereal Crops in Rajasthan: The Cobb-Douglas Analysis. Econ. Aff. 2021, 66, 195–200. [Google Scholar] [CrossRef]
- Simionescu, M.; Bilan, Y.; Gędek, S.; Streimikiene, D. The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union. Sustainability 2019, 11, 3433. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Palosuo, T.; Ruosteenoja, K.; Jauhiainen, L.; Ojanen, H. Warming Autumns at High Latitudes of Europe: An Opportunity to Lose or Gain in Cereal Production? Reg. Environ. Chang. 2018, 18, 1453–1465. [Google Scholar] [CrossRef]
- Carozzi, M.; Martin, R.; Klumpp, K.; Massad, R.S. Effects of Climate Change in European Croplands and Grasslands: Productivity, Greenhouse Gas Balance and Soil Carbon Storage. Biogeosciences 2022, 19, 3021–3050. [Google Scholar] [CrossRef]
- Selden, T.M.; Song, D. Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Allard, A.; Takman, J.; Uddin, G.S.; Ahmed, A. The N-Shaped Environmental Kuznets Curve: An Empirical Evaluation Using a Panel Quantile Regression Approach. Environ. Sci. Pollut. Res. 2018, 25, 5848–5861. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.; Inekwe, J.; Ivanovski, K.; Smyth, R. The Environmental Kuznets Curve in the OECD: 1870–2014. Energy Econ. 2018, 75, 389–399. [Google Scholar] [CrossRef]
- Shahbaz, M.; Sinha, A. Environmental Kuznets Curve for CO2 Emissions: A Literature Survey. J. Econ. Stud. 2019, 46, 106–168. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Shahbaz, M.; Jiao, Z.; Tufail, M. How Energy Consumption, Industrial Growth, Urbanization, and CO2 Emissions Affect Economic Growth in Pakistan? A Novel Dynamic ARDL Simulations Approach. Energy 2021, 221, 119793. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Bein, M.A.; Gyamfi, B.A.; Bekun, F.V. Does Agricultural Development Induce Environmental Pollution in E7? A Myth or Reality. Environ. Sci. Pollut. Res. 2021, 28, 41869–41880. [Google Scholar] [CrossRef] [PubMed]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Praveen, B.; Sharma, P. A Review of Literature on Climate Change and Its Impacts on Agriculture Productivity. J. Public Aff. 2019, 19, e1960. [Google Scholar] [CrossRef]
- Blake, R. Will the European Green Deal Make Agriculture More Sustainable? Outlooks Pest Manag. 2020, 31, 198–200. [Google Scholar] [CrossRef]
- Suproń, B.; Myszczyszyn, J. Exploring the Dynamic Relationships between Agricultural Production and Environmental Pollution: Evidence from a GMM-SYS Model in the Three Seas Initiative (3SI). Sustainability 2024, 16, 3748. [Google Scholar] [CrossRef]
- Kulawik, J. The Common Agricultural Policy of the European Union in a Global Perspective. Gospod. Nar. Pol. J. Econ. 2015, 279, 119–143. [Google Scholar] [CrossRef]
- Warsame, A.A.; Sheik-Ali, I.A.; Ali, A.O.; Sarkodie, S.A. Climate Change and Crop Production Nexus in Somalia: An Empirical Evidence from ARDL Technique. Environ. Sci. Pollut. Res. 2021, 28, 19838–19850. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, F.; Chandio, A.A.; Fang, W. Climate Change Impacts on Cereal Crops Production in Pakistan: Evidence from Cointegration Analysis. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 257–269. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Fatima, T.; Ahmad, F.; Ahmad, M.; Li, J. Assessing the Impacts of Climate Change on Cereal Production in Bangladesh: Evidence from ARDL Modeling Approach. Int. J. Clim. Chang. Strateg. Manag. 2022, 14, 125–147. [Google Scholar] [CrossRef]
- Nasrullah, M.; Rizwanullah, M.; Yu, X.; Jo, H.; Sohail, M.T.; Liang, L. Autoregressive Distributed Lag (ARDL) Approach to Study the Impact of Climate Change and Other Factors on Rice Production in South Korea. J. Water Clim. Chang. 2021, 12, 2256–2270. [Google Scholar] [CrossRef]
- Attiaoui, I.; Boufateh, T. Impacts of Climate Change on Cereal Farming in Tunisia: A Panel ARDL–PMG Approach. Environ. Sci. Pollut. Res. 2019, 26, 13334–13345. [Google Scholar] [CrossRef] [PubMed]
- Chandio, A.A.; Gokmenoglu, K.K.; Ahmad, F. Addressing the Long- and Short-Run Effects of Climate Change on Major Food Crops Production in Turkey. Environ. Sci. Pollut. Res. 2021, 28, 51657–51673. [Google Scholar] [CrossRef]
- Ahmed, M.; Shuai, J.; Ali, H. The Effects of Climate Change on Food Production in India: Evidence from the ARDL Model. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Rehman, A.; Rauf, A. Short and Long-Run Impacts of Climate Change on Agriculture: An Empirical Evidence from China. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 201–221. [Google Scholar] [CrossRef]
- Alehile, K.S.; Njiforti, P.P.; Duru, M.C.; Jibril, M.S. Impact of climate change on nigerian agricultural sector crop production. J. Econ. Allied Res. 2022, 7, 105–115. [Google Scholar]
- Xiang, X.; Solaymani, S. Change in Cereal Production Caused by Climate Change in Malaysia. Ecol. Inform. 2022, 70, 101741. [Google Scholar] [CrossRef]
- Kumar, P.; Sahu, N.C.; Kumar, S.; Ansari, M.A. Impact of Climate Change on Cereal Production: Evidence from Lower-Middle-Income Countries. Environ. Sci. Pollut. Res. 2021, 28, 51597–51611. [Google Scholar] [CrossRef]
- Ogundari, K.; Onyeaghala, R. The Effects of Climate Change on African Agricultural Productivity Growth Revisited. Environ. Sci. Pollut. Res. 2021, 28, 30035–30045. [Google Scholar] [CrossRef] [PubMed]
- Onour, I. Effect of Carbon Dioxide Concentration on Cereal Yield in Sudan 2019. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3840016 (accessed on 18 June 2024).
- Abbasi, K. Green Growth of Cereal Food Production under the Constraints of Agricultural Carbon Emissions: A New Insights from ARDL and VECM Models. Sustain. Energy Technol. Assess. 2021, 47, 101452. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: 2010; ISBN 978-0-262-23258-6. Available online: https://lunarintcollege.edu.et/wp-content/uploads/2022/07/Wooldridge-J.M.-Econometric-Analysis-of-Cross-Section-and-Panel-Data-2ed-.pdf (accessed on 18 June 2024).
- Pesaran, M.H. A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Feng, Q.; Kao, C. A Lagrange Multiplier Test for Cross-Sectional Dependence in a Fixed Effects Panel Data Model. J. Econom. 2012, 170, 164–177. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for Unit Roots in Heterogeneous Panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for Error Correction in Panel Data*. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef]
- Fomby, T.B.; Johnson, S.R.; Hill, R.C. Feasible Generalized Least Squares Estimation. In Advanced Econometric Methods; Fomby, T.B., Johnson, S.R., Hill, R.C., Eds.; Springer: New York, NY, USA, 1984; pp. 147–169. ISBN 978-1-4419-8746-4. [Google Scholar]
- Bai, J.; Choi, S.H.; Liao, Y. Feasible Generalized Least Squares for Panel Data with Cross-Sectional and Serial Correlations. Empir. Econ. 2021, 60, 309–326. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Banerjee, A.; Jhariya, M.K.; Raj, A.; Yadav, D.K.; Khan, N.; Meena, R.S. Energy and Climate Footprint Towards the Environmental Sustainability. In Agroecological Footprints Management for Sustainable Food System; Banerjee, A., Meena, R.S., Jhariya, M.K., Yadav, D.K., Eds.; Springer: Singapore, 2021; pp. 415–443. ISBN 9789811594960. [Google Scholar]
- Rahman, M.M.; Khan, I.; Field, D.L.; Techato, K.; Alameh, K. Powering Agriculture: Present Status, Future Potential, and Challenges of Renewable Energy Applications. Renew. Energy 2022, 188, 731–749. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Amin, A.; Akram, W.; Ozturk, I.; Sinha, A.; Ahmad, F. Modeling the Impact of Climatic and Non-Climatic Factors on Cereal Production: Evidence from Indian Agricultural Sector. Environ. Sci. Pollut. Res. 2022, 29, 14634–14653. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Kumar, P.; Mohammad, S.; Ali, N.; Ansari, M.A. Asymmetric Effects of Cereal Crops on Agricultural Economic Growth: A Case Study of India. SN Bus. Econ. 2021, 1, 160. [Google Scholar] [CrossRef]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Rehman, A. Energy Consumption and Agricultural Economic Growth in Pakistan: Is There a Nexus? Int. J. Energy Sect. Manag. 2018, 13, 597–609. [Google Scholar] [CrossRef]
- Ghosh, S. Carbon Dioxide Emissions, Energy Consumption in Agriculture: A Causality Analysis for India. Arthaniti J. Econ. Theory Pract. 2018, 17, 183–207. [Google Scholar] [CrossRef]
- Aydoğan, B.; Vardar, G. Evaluating the Role of Renewable Energy, Economic Growth and Agriculture on CO2 Emission in E7 Countries. Int. J. Sustain. Energy 2020, 39, 335–348. [Google Scholar] [CrossRef]
- Semenov, M.A.; Porter, J.R. The Implications and Importance of Non-Linear Responses in Modelling the Growth and Development of Wheat. In Predictability and Nonlinear Modelling in Natural Sciences and Economics; Grasman, J., van Straten, G., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 157–171. ISBN 978-94-011-0962-8. [Google Scholar]
Source/Study | Period | Country | Results | Methodology |
---|---|---|---|---|
Warsame et al., 2021 [57] | 1985–2016 | Somalia | P(+)→CP(+) T(+)→CP(−) CO2(+)→CP(+) LCU(+)→CP(+) | ARDL |
Chandio et al., 2020 [58] | 1983–2016 | Pakistan | CO2(+)→CP(+) EC(+)→CP(+) | ARDL |
Chandio et al., 2022 [59] | 1988–2014 | Bangladesh | T(+)→CP(−) CO2(+)→CP(−) LCU→CP(+) EC→CP(+) P(+)→CP(+) | ARDL |
Nasrullah et al., 2021 [60] | 1973–2018 | South Korea | T(+)→CP(+) CO2(+)→CP(+) LCU(+)→CP(+) | ARDL |
Attiaoui and Boufateh, 2019 [61] | 1975–2014 | Tunisia | P(−)→CP(−) T(+)→CP(+) | ARDL |
Chandio et al., 2021 [62] | 1980–2016 | Turkey | T(+)→CP(−) CO2(+)→CP(−) LCU(+)→CP(−) | ARDL |
Ahsan et al., 2020 [58] | 1971–2014 | Pakistan | CO2(+)→CP(+) LCU(+)→CP(+) EC(+)→CP(+) | ARDL |
Ahmed et al., 2023 [63] | 1990–2019 | India | CO2 (+)→FP(−) T(+)→FP(−) | ARDL |
Chandio et al., 2020 [64] | 1982–2014 | China | CO2(+)→CP(+) T(+)→CP(−) P(+)→CP(−) LCU(+)→CP(−) | ARDL |
Alehile et al., 2022 [65] | 1990–2020 | Nigeria | T(+)→CP(−) P(+)→CP(−) | NARDL |
Xiang and Solaymani, 2022 [66] | 1969–2018 | Malaysia | T(+)→CP(−) P(+)→CP(−) CO2→CP(−) | ARDL |
Kumar et al., 2021 [67] | 1971–2016 | Lower middle-income countries | T(+)→CP(−) P(+)→CP(−) CO2(+)→CP(+) | FGLS/FMOLS |
Ogundari and Onyeaghala, 2021 [68] | 1981–2010 | African countries | P(+)→CP(+) T(+) ≠ CP(+) | FGLS |
Onour, 2019 [69] | 1961–2016 | Sudan | CO2(+)→CP(+) | ARDL |
Abbasi, 2021 [70] | 1985–2018 | China | CO2(+)→CP(+) | ARDL/VECM |
Variable | Symbol | Units | Source |
---|---|---|---|
Yield (cereal production per hectare) | CP | kg/ha | WDI |
Area with cereal crops | LCU | ha | WDI |
GDP per capita | GDP | Constant USD 2015 | WDI |
Average annual precipitation | P | mm | EEA |
Average annual temperature | T | °C | EEA |
Energy consumption in the agricultural sector | EC | thousand tonnes eq of crude oil | UNFCCC |
CO2 emissions | CO2 | kg per capita | WDI/UNFCCC |
Consumption of renewable energy | REW | % of total final energy consumption | WDI |
Period | Variable | Mean | Min | Max | SD |
---|---|---|---|---|---|
1992 | CP | 3717.97 | 1403.75 | 7459.17 | 1723.88 |
2021 | 5611.95 | 2777.20 | 8606.73 | 1501.72 | |
1992 | GDP | 17,575.14 | 2857.78 | 40,384.45 | 12,398.58 |
2021 | 31,185.66 | 8638.64 | 90,590.08 | 20,052.35 | |
1992 | LCU | 2,684,077.00 | 180,936.30 | 9,324,911.00 | 2,867,495.00 |
2021 | 2,364,339.00 | 169,719.10 | 9,326,776.00 | 2,669,707.00 | |
1992 | EC | 1341.81 | 266.51 | 4155.55 | 1253.48 |
2021 | 1244.37 | 88.11 | 4270.55 | 1470.98 | |
1992 | P | 729.48 | 559.02 | 1165.96 | 172.30 |
2021 | 724.52 | 557.29 | 1206.40 | 165.84 | |
1992 | T | 9.31 | 2.20 | 15.65 | 3.26 |
2021 | 10.38 | 3.04 | 16.46 | 3.39 | |
1992 | CO2 | 223.44 | 39.85 | 1700.19 | 351.13 |
2021 | 213.35 | 98.08 | 1637.13 | 320.29 | |
1992 | REW | 10.49 | 1.15 | 32.87 | 10.62 |
2021 | 26.77 | 10.78 | 58.39 | 12.81 |
Variable | CP | GDP | LCU | EC | P | T | CO2 | REW |
---|---|---|---|---|---|---|---|---|
CP | 1.000 | 0.653 | −0.038 | 0.257 | 0.504 | 0.182 | 0.424 | −0.192 |
GDP | 0.653 | 1.000 | −0.116 | 0.245 | 0.330 | −0.180 | 0.354 | 0.073 |
LCU | −0.038 | −0.116 | 1.000 | 0.450 | −0.401 | 0.186 | −0.318 | −0.110 |
EC | 0.257 | 0.245 | 0.450 | 1.000 | −0.102 | 0.227 | 0.011 | −0.387 |
P | 0.504 | 0.330 | −0.401 | −0.102 | 1.000 | 0.275 | 0.581 | −0.048 |
T | 0.182 | −0.180 | 0.186 | 0.227 | 0.275 | 1.000 | 0.115 | −0.361 |
CO2 | 0.424 | 0.354 | −0.318 | 0.011 | 0.581 | 0.115 | 1.000 | −0.388 |
REW | −0.192 | 0.073 | −0.110 | −0.387 | −0.048 | −0.361 | −0.388 | 1.000 |
Variable | VIF | 1/VIF |
---|---|---|
CO2 | 2.23 | 0.449 |
P | 2.19 | 0.457 |
REW | 1.85 | 0.541 |
EC | 1.81 | 0.552 |
GDP | 1.64 | 0.609 |
LCU | 1.64 | 0.61 |
T | 1.58 | 0.633 |
Mean VIF | 1.85 |
Variable | Pesaran CD | Breusch–Pagan LM | CIPS I(0) | CIPS I(1) |
---|---|---|---|---|
CP | 25.91 *** | 1162.24 *** | −4.980 *** | −6.190 *** |
GDP | 32.30 *** | 2039.75 *** | −1.960 | −3.699 *** |
LCU | 18.32 *** | 1396.63 *** | 2.360 *** | −5.538 *** |
T | 32.23 | 1968.11 *** | −2.998 *** | −2.232 *** |
P | 53.75 *** | 3350.06 *** | −1.241 | −4.565 *** |
EC | 42.24 *** | 3471.88 *** | −2.499 *** | −5.133 *** |
CO2 | 37.03 *** | 2056.33 *** | −1.789 | −5.797 *** |
REW | 58.31 *** | 3749.04 *** | −2.645 *** | −4.977 *** |
Test | Statistic |
---|---|
Westerlund variance ratio | −2.1617 ** |
Breusch–Pagan/Cook–Weisberg test for heteroscedasticity (Chi2) | 11.76 *** |
Cameron and Trivedi’s decomposition of IM-test (Chi2) | 250.14 *** |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
GDP | 0.318 *** | 0.3619 *** | 0.224 *** | 0.314 *** | 0.364 *** |
T | 0.163 *** | 0.1842 *** | 0.085 *** | 0.133 ** | 0.193 *** |
P | 0.585 *** | 0.5216 *** | 0.446 *** | 0.586 *** | 0.432 *** |
LCU | 0.041 *** | 0.0691 *** | 0.040 *** | 0.048 *** | 0.095 *** |
EC | −0.00019 *** | −0.00023 *** | |||
SQEC | 4.21 × 10−8 *** | 4.66 × 10−8 *** | |||
CO2 | 0.587 *** | 0.00065 *** | |||
SQCO2 | −0.041 ** | −3.85 × 10−7 * | |||
REW | −0.217 *** | −0.221 *** | |||
SQREW | 0.032 *** | 0.041 *** | |||
Constant | 0.436 | 0.0575 | 0.597 | 0.768 | 0.461 |
Inflection point | 2256.53 | 914.15 | 3.39 | ||
R2 | 0.573 | 0.592 | 0.609 | 0.605 | 0.630 |
Chi2 | 1448.17 | 1013.94 | 1029.86 | 657.91 | 482.92 |
Variable | Quantile | ||
---|---|---|---|
Q = 0.25 | Q = 0.50 | Q = 0.75 | |
GDP | 0.411 *** | 0.356 *** | 0.326 *** |
LCU | 0.110 *** | 0.059 ** | −0.008 |
P | 0.598 *** | 0.512 *** | 0.194 *** |
T | 0.192 *** | 0.198 *** | 0.316 *** |
ECP | −0.00028 *** | −0.00022 *** | −0.00007 |
SQECP | 6.01 × 10−8 *** | 4.95 × 10−8 *** | 1.84 × 10−8 |
Constant | −1.600 *** | 0.329 | 3.518 *** |
Turning point | 2329.45 | 2222.22 | |
Quantile Slope Equality Test | 131.69 *** | ||
Symmetric Quantiles Test | 10.78 |
Variable | Quantile | Variable | Quantile |
---|---|---|---|
Q = 0.25 | Q = 0.50 | Q = 0.75 | |
GDP | 0.267 *** | 0.306 *** | 0.308 *** |
LCU | 0.088 *** | 0.048 *** | 0.002 |
P | 0.668 *** | 0.472 *** | 0.161 *** |
T | 0.075 ** | 0.159 *** | 0.311 *** |
CO2 | 0.00095 *** | 0.00093 *** | 0.00058 *** |
SQCO2 | −5.32 × 10−7 *** | −5.46 × 10−7 *** | −3.30 × 10−7 *** |
Constant | −0.351 | 1.114 ** | 3.677 *** |
Turning point | 892.86 | 866.66 | 878.78 |
Quantile Slope Equality Test | 83.025 *** | ||
Symmetric Quantiles Test | 12.06 * |
Variable | Quantile | ||
---|---|---|---|
Q = 0.25 | Q = 0.50 | Q = 0.75 | |
GDP | 0.317 *** | 0.340 *** | 0.337 *** |
LCU | 0.080 *** | 0.056 *** | −0.003 |
P | 0.710 *** | 0.529 *** | 0.214 *** |
T | 0.107 *** | 0.183 *** | 0.324 *** |
REW | −0.220 ** | −0.272 *** | −0.051 |
SQREW | 0.034 *** | 0.046 *** | 0.005 |
Constant. | −0.630 | 0.722 | 0.856 *** |
Turning point | 3.24 | 2.95 | |
Quantile Slope Equality Test | 72.83 *** | ||
Symmetric Quantiles Test | 20.07 *** |
Variable | Quantile | ||
---|---|---|---|
Q = 0.25 | Q = 0.50 | Q = 0.75 | |
GDP | 0.386 *** | 0.354 *** | 0.327 *** |
LCU | 0.107 *** | 0.086 *** | 0.011 |
P | 0.530 *** | 0.489 *** | 0.214 *** |
T | 0.167 *** | 0.180 *** | 0.283 * |
ECP | −0.00030 *** | −0.00022 *** | −0.00012 * |
SQECP | 6.05 × 10−8 *** | 4.57 × 10−8 *** | 2.52 × 10−8 |
CO2 | 0.000636 ** | 0.000640 ** | 0.000416 ** |
SQCO2 | −4.16 × 10−7 ** | −4.37 × 10−7 ** | −2.80 × 10−7 ** |
REW | −0.2691 ** | −0.2658 *** | −0.0557 |
SQREW | 0.0473 ** | 0.0465 *** | 0.0036 |
Constant | −0.5128 | 0.4353 | 3.2629 *** |
Quantile Slope Equality Test | 73.22 * | ||
Symmetric Quantiles Test | 16.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łącka, I.; Suproń, B.; Szczepaniak, I. Does Climate Change and Energy Consumption Affect the Food Security of European Union Countries? Empirical Evidence from a Panel Study. Energies 2024, 17, 3237. https://doi.org/10.3390/en17133237
Łącka I, Suproń B, Szczepaniak I. Does Climate Change and Energy Consumption Affect the Food Security of European Union Countries? Empirical Evidence from a Panel Study. Energies. 2024; 17(13):3237. https://doi.org/10.3390/en17133237
Chicago/Turabian StyleŁącka, Irena, Błażej Suproń, and Iwona Szczepaniak. 2024. "Does Climate Change and Energy Consumption Affect the Food Security of European Union Countries? Empirical Evidence from a Panel Study" Energies 17, no. 13: 3237. https://doi.org/10.3390/en17133237
APA StyleŁącka, I., Suproń, B., & Szczepaniak, I. (2024). Does Climate Change and Energy Consumption Affect the Food Security of European Union Countries? Empirical Evidence from a Panel Study. Energies, 17(13), 3237. https://doi.org/10.3390/en17133237