Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Data
3.2. Deterministic Forecasting
3.3. Quantile Regression
3.4. ARCH or GARCH Variance Forecast
Algorithm 1: The Transformation to Normal Algorithm |
3.5. Exponential Smoothing Variance Forecast
3.6. Wind Farm Modelling
3.7. Solar Farm Modelling
3.8. Benchmark
4. Metrics
5. Results and Discussion
5.1. Solar Energy
5.2. Wind Farm Output
5.3. Solar Farm Output
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Snell, T.; West, S.; Amos, M.; Farah, S.; Boland, J.; Kay, M.; Prasad, A. Solar Power Ensemble Forecaster Final Report Project Summary and Findings; Technical Report; CSIRO: Canberra, Australia, 2020. [Google Scholar]
- Boland, J.; David, M.; Lauret, P. Short term solar radiation forecasting: Island versus continental sites. Energy 2016, 113, 186–192. [Google Scholar] [CrossRef]
- David, M.; Luis, M.A.; Lauret, P. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data. Int. J. Forecast. 2018, 34, 529–547. [Google Scholar] [CrossRef]
- David, M.; Ramahatana, F.; Trombe, P.J.; Lauret, P. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Sol. Energy 2016, 133, 55–72. [Google Scholar] [CrossRef]
- Huang, J.; Korolkiewicz, M.; Agrawal, M.; Boland, J. Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model. Sol. Energy 2013, 87, 136–149. [Google Scholar] [CrossRef]
- Grantham, A.; Gel, Y.; Boland, J. Nonparametric short-term probabilistic forecasting for solar radiation. Sol. Energy 2016, 133, 465–475. [Google Scholar] [CrossRef]
- Alessandrini, S.; Monache, L.D.; Sperati, S.; Cervone, G. An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy 2015, 157, 95–110. [Google Scholar] [CrossRef]
- Boland, J.; Grantham, A. Nonparametric Conditional Heteroscedastic Hourly Probabilistic Forecasting of Solar Radiation. J 2018, 1, 174–191. [Google Scholar] [CrossRef]
- Lauret, P.; David, M.; Pedro, H.T. Probabilistic solar forecasting using quantile regression models. Energies 2017, 10, 1591. [Google Scholar] [CrossRef]
- Pan, C.; Tan, J.; Feng, D. Prediction intervals estimation of solar generation based on gated recurrent unit and kernel density estimation. Neurocomputing 2021, 453, 552–562. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Yang, M. Ultra-Short-Term Wind Power Interval Prediction Based on Fluctuating Process Partitioning and Quantile Regression Forest. Front. Energy Res. 2022, 10, 867719. [Google Scholar] [CrossRef]
- Alcántara, A.; Galván, I.M.; Aler, R. Direct estimation of prediction intervals for solar and wind regional energy forecasting with deep neural networks. Eng. Appl. Artif. Intell. 2022, 114, 105128. [Google Scholar] [CrossRef]
- Pinson, P.; Nielsen, H.A.; Møller, J.K.; Madsen, H.; Kariniotakis, G.N. Non-parametric probabilistic forecasts of wind power: Required properties and evaluation. Wind Energy 2007, 10, 497–516. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Zeng, B.; Lu, H. A novel ensemble probabilistic forecasting system for uncertainty in wind speed. Appl. Energy 2022, 313, 118796. [Google Scholar] [CrossRef]
- Wan, C.; Cui, W. Machine Learning-Based Probabilistic Forecasting: A Combined Bootstrap and Cumulant Method. IEEE Trans. Power Syst. 2023, 39, 1370–1383. [Google Scholar] [CrossRef]
- Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar] [CrossRef]
- Boland, J. Characterising seasonality of solar radiation and solar farm output. Energies 2020, 13, 471. [Google Scholar] [CrossRef]
- Boland, J. Time series modelling of solar radiation. In Modeling Solar Radiation at the Earth’s Surface: Recent Advances; Springer: Berlin/Heidelberg, Germany, 2008; pp. 283–312. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized Autoregressive Conditional Heteroscedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Sfeir, A.A. A stochastic model for predicting solar system performance. Sol. Energy 1980, 25, 149–154. [Google Scholar] [CrossRef]
Naive | Quantile | ARCH | |
---|---|---|---|
99 | 96.3 | 98.9 | 98.8 |
95 | 93.7 | 94.9 | 96.0 |
90 | 91.8 | 90.0 | 92.4 |
80 | 88.4 | 79.9 | 83.3 |
Naive | Quantile | ARCH | |
---|---|---|---|
99 | 31.9 | 47.4 | 33.9 |
95 | 24.6 | 27.1 | 23.2 |
90 | 20.7 | 18.1 | 17.3 |
80 | 16.3 | 9.4 | 11.0 |
Naive | Quantile | ARCH | |
---|---|---|---|
95 | 93.9 | 95 | 96.0 |
90 | 91.0 | 90 | 91.2 |
80 | 85.5 | 80 | 80.7 |
Naive | Quantile | ARCH | |
---|---|---|---|
95 | 31.1 | 33.1 | 33.8 |
90 | 27.5 | 24.8 | 25.5 |
80 | 21.8 | 17.2 | 17.2 |
Naive | Quantile | Transform | |
---|---|---|---|
95 | 94.9 | 96.2 | 94.0 |
90 | 93.4 | 92.2 | 89.8 |
80 | 91.0 | 83.6 | 78.1 |
Naive | Quantile | Transform | |
---|---|---|---|
95 | 29.6 | 34.4 | 26.3 |
90 | 25.4 | 22.8 | 20.6 |
80 | 20.3 | 11.1 | 13.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boland, J. Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods. Energies 2024, 17, 3240. https://doi.org/10.3390/en17133240
Boland J. Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods. Energies. 2024; 17(13):3240. https://doi.org/10.3390/en17133240
Chicago/Turabian StyleBoland, John. 2024. "Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods" Energies 17, no. 13: 3240. https://doi.org/10.3390/en17133240
APA StyleBoland, J. (2024). Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods. Energies, 17(13), 3240. https://doi.org/10.3390/en17133240