An Arrhenius-Based Simulation Tool for Predicting Aging of Lithium Manganese Dioxide Primary Batteries in Implantable Medical Devices
Abstract
:1. Introduction
2. Battery Discharge Characteristics
3. Battery Arrhenius-Based Thermo-Electrical Dynamic Model
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leong, A.M.; Arnold, A.D.; Whinnett, Z.I. Implantable Cardioverter Defibrillator Tachycardia Therapies: Past, Present and Future Directions. J. Cardiovasc. Dev. Dis. 2024, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Sun, X.; Peng, H. Power supplies for cardiovascular implantable electronic devices. EcoMat 2023, 5, e12343. [Google Scholar] [CrossRef]
- Hauser, R.G.; Casey, S.A.; Gitter, C.B.; Tang, C.Y.; Abdelhadi, R.H.; Gornick, C.C.; Stanberry, L.; Sengupta, J.D. Reliability and longevity of implantable defibrillators. J. Interv. Card. Electrophysiol. 2021, 62, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Pope, J.E.; Falowski, S.M.; Pilitsis, J.G.; Hunter, C.W.; Burton, A.W.; Connolly, A.T.; Verrills, P. Clinical longevity of 106,462 rechargeable and primary cell spinal cord stimulators: Real world study in the medicare population. Neuromodul. Technol. Neural Interface 2023, 26, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Cortner, J.M.; Dizon, E.; Rodriguez-Alvarez, J. Testing lifetime performance of primary batteries. IEEE Instrum. Meas. Mag. 2013, 16, 26–31. [Google Scholar] [CrossRef]
- Harding, J.R.; Han, B.; Madden, S.B.; Horn, Q.C. Examining the performance of implantable-grade lithium-ion cells after overdischarge and thermally accelerated aging. Energies 2022, 15, 1405. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; et al. Lithium ion battery degradation: What you need to know. Phys. Chem. Chem. Phys. 2021, 23, 8200–8221. [Google Scholar] [CrossRef]
- Manolis, A.S.; Maounis, T.; Koulouris, S.; Vassilikos, V. “Real life” longevity of implantable cardioverter-defibrillator devices. Clin. Cardiol. 2017, 40, 759–764. [Google Scholar] [CrossRef]
- Knight, B.P.; Clementy, N.; Amin, A.; Birgersdotter-Green, U.M.; Roukoz, H.; Holbrook, R.; Manlucu, J. The clinical and economic impact of extended battery longevity of a substernal extravascular implantable cardioverter defibrillator. J. Cardiovasc. Electrophysiol. 2024, 35, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Ziacchi, M.; Angeletti, A.; Carecci, A.; Bertelli, M.; Locchi, F.; Oppimitti, J.; Biffi, M. Unanticipated subcutaneous ICD end-of-service due to premature battery depletion and occurrence of lead fracture: A single centre experience. Int. J. Cardiol. 2024, 400, 131687. [Google Scholar] [CrossRef] [PubMed]
- Lüker, J.; Strik, M.; Andrade, J.G.; Raymond-Paquin, A.; Elrefai, M.H.; Roberts, P.R.; Pérez, Ó.C.; Kron, J.; Koneru, J.; Franqui-Rivera, H.; et al. Incidence of premature battery depletion in subcutaneous cardioverter-defibrillator patients: Insights from a multicenter registry. J. Interv. Card. Electrophysiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Seo, J.K.; Yaylian, R.; Huang, A.; Meng, Y.S. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 2020, 65, 356–387. [Google Scholar] [CrossRef]
- Doosthosseini, M.; Ghods, H.; Talkhoncheh, M.K.; Silberberg, J.L.; Weininger, S. Hybrid Cathode Lithium Battery Discharge Simulation for Implantable Cardioverter Defibrillators Using a Coupled Electro-Thermal Dynamic Model. Cardiovasc. Eng. Technol. 2023, 14, 534–543. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A general energy balance for battery systems. J. Electrochem. Soc. 1985, 132, 5–12. [Google Scholar] [CrossRef]
- Doosthosseini, M.; Fathy, H.K. On the Structure of the Optimal Input for Maximizing Lithium-Ion Battery Thermal Parameter Identifiability. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 379–385. [Google Scholar]
- Vennam, G.; Sahoo, A. A dynamic soh-coupled lithium-ion cell model for state and parameter estimation. IEEE Trans. Energy Convers. 2022, 38, 1186–1196. [Google Scholar] [CrossRef]
- Gomadam, P.M.; Merritt, D.R.; Scott, E.R.; Schmidt, C.L.; Skarstad, P.M.; Weidner, J.W. Modeling lithium/hybrid-cathode batteries. J. Power Sources 2007, 174, 872–876. [Google Scholar] [CrossRef]
- Manane, Y.; Yazami, R. Accurate state of charge assessment of lithium-manganese dioxide primary batteries. J. Power Sources 2017, 359, 422–426. [Google Scholar] [CrossRef]
- Root, M.J. Lithium–manganese dioxide cells for implantable defibrillator devices—Discharge voltage models. J. Power Sources 2010, 195, 5089–5093. [Google Scholar] [CrossRef]
- Chen, K.; Merritt, D.R.; Howard, W.G.; Schmidt, C.L.; Skarstad, P.M. Hybrid cathode lithium batteries for implantable medical applications. J. Power Sources 2006, 162, 837–840. [Google Scholar] [CrossRef]
- Eiringhaus, J.; Zormpas, C.; Hohmann, S.; Mueller-Leisse, J.; Hillmann, H.A.; Duncker, D.; Veltmann, C. Premature end of service of implantable cardioverter-defibrillator by magnetic interference with left-ventricular assist device. Hear. Case Rep. 2021, 7, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Baliga, B.J. Chapter 13—IGBT Applications: Medical. In The IGBT Device; Baliga, B.J., Ed.; William Andrew Publishing: Amsterdam, The Netherlands, 2015; pp. 405–450. [Google Scholar]
Battery Type | Capacity (Ah) | Operating Voltage (V) | Longevity (year) | Energy Density (Wh/Kg) |
---|---|---|---|---|
2.0–3.5 | 2.8 | >10 | 210–270 | |
1.0–2.0 | 2.9 | >10 | 230–270 | |
2 | 3.0 | 5–10 | 440 | |
0.9–2.0 | 2.4–2.8 | 5–10 | 270 | |
1.7–2.0 | 3.0 | 5–10 | 400 |
Parameter | Values, Unit | Parameter | Values, Unit |
---|---|---|---|
Q | 620 [mAh] | h | 11 [J/s·m2K] |
A | [m2] | m | 0.03 [kg] |
I | 25 [A] | 0.11 | |
0.27 | [F] | ||
1 | |||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doosthosseini, M.; Khajeh Talkhoncheh, M.; Silberberg, J.L.; Ghods, H. An Arrhenius-Based Simulation Tool for Predicting Aging of Lithium Manganese Dioxide Primary Batteries in Implantable Medical Devices. Energies 2024, 17, 5392. https://doi.org/10.3390/en17215392
Doosthosseini M, Khajeh Talkhoncheh M, Silberberg JL, Ghods H. An Arrhenius-Based Simulation Tool for Predicting Aging of Lithium Manganese Dioxide Primary Batteries in Implantable Medical Devices. Energies. 2024; 17(21):5392. https://doi.org/10.3390/en17215392
Chicago/Turabian StyleDoosthosseini, Mahsa, Mahdi Khajeh Talkhoncheh, Jeffrey L. Silberberg, and Hamed Ghods. 2024. "An Arrhenius-Based Simulation Tool for Predicting Aging of Lithium Manganese Dioxide Primary Batteries in Implantable Medical Devices" Energies 17, no. 21: 5392. https://doi.org/10.3390/en17215392
APA StyleDoosthosseini, M., Khajeh Talkhoncheh, M., Silberberg, J. L., & Ghods, H. (2024). An Arrhenius-Based Simulation Tool for Predicting Aging of Lithium Manganese Dioxide Primary Batteries in Implantable Medical Devices. Energies, 17(21), 5392. https://doi.org/10.3390/en17215392