Evaluation of an Infinite-Level Inverter Operation Powered by a DC–DC Converter in Open and Closed Loop
Abstract
:1. Introduction
2. Materials and Methods
2.1. BUCK Converter Stage
2.2. Single-Phase Full-Bridge Inverter Stage
2.3. Controller
2.4. Digital Compensator
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shakeera, S.; Rachananjali, K. Advancing Power Conversion: A Comprehensive Survey on Reduced Multilevel Inverters, Switching Techniques, and Controllers. In Proceedings of the 2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI), Kannur, India, 21–22 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Rajesh, B.; Manjesh. Comparison of harmonics and THD suppression with three and 5 level multilevel inverter-cascaded H-bridge. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Vivert, M.; Diez, R.; Cousineau, M.; Bernal Cobaleda, D.; Patino, D.; Ladoux, P. Real-Time Adaptive Selective Harmonic Elimination for Cascaded Full-Bridge Multilevel Inverter. Energies 2022, 15, 2995. [Google Scholar] [CrossRef]
- Buccella, C.; Cimoroni, M.G.; Sahebi, A.G.; Cecati, C.; Miceli, R.; Di Tommaso, A.O.; Nevoloso, C.; Schettino, G. Recursive Method for Harmonic Elimination Problem in Multilevel Inverters. In Proceedings of the 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Napoli, Italy, 19–21 June 2024; pp. 515–520. [Google Scholar] [CrossRef]
- Gonzalez, S.A.; Verne, S.A.; Valla, M.I. Multilevel Converters for Industrial Applications; CRC Press: Boca Raton, FL, USA, 2013; p. 217. [Google Scholar]
- Shieh, J.J.; Hwu, K.I.; Chen, S.J. Perspective of Voltage-Fed Single-Phase Multilevel DC-AC Inverters. Energies 2023, 16, 898. [Google Scholar] [CrossRef]
- Juyal, V.D.; Upadhyay, N.; Singh, K.V.; Chakravorty, A.; Maurya, A.K. Comparative harmonic analysis of Diode clamped multi-level inverter. In Proceedings of the 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages, IoT-SIU 2018, Bhimtal, India, 23–24 February 2018. [Google Scholar] [CrossRef]
- Ahmad, A.; Anas, M.; Sarwar, A.; Zaid, M.; Tariq, M.; Ahmad, J.; Beig, A.R. Realization of a Generalized Switched-Capacitor Multilevel Inverter Topology with Less Switch Requirement. Energies 2020, 13, 1556. [Google Scholar] [CrossRef]
- Uddin, M.J.; Islam, M.S. Implementation of Cascaded Multilevel Inverter with Reduced Number of Components. In Proceedings of the ICREST 2021-2nd International Conference on Robotics, Electrical and Signal Processing Techniques, Dhaka, Bangladesh, 5–7 January 2021; pp. 669–672. [Google Scholar] [CrossRef]
- Ohn, S.; Rankin, P.; Yu, J.; Burgos, R.; Boroyevich, D.; Suryanarayana, H.; Belcastro, C. Design of 20 kW Full-SiC, Three-level Three-Phase Uninterruptible Power Supply. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018; pp. 167–173. [Google Scholar] [CrossRef]
- Joy, M.C.; Jayan, B. Three-phase infinite level inverter fed induction motor drive. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Joy, M.C.; Chaithanya, V.; Jayanand, B. Three-phase infinite level inverter based active power filter. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Rashid, M.H. Electrónica de Potencia: Circuitos, Dispositivos y Aplicaciones; Pearson Educación: Madrid, Spain, 2004. [Google Scholar]
- Renukadevi, V.; Jayanand, B.; Sobha, M. A DC-DC converter-based infinite level inverter as DSTATCOM. Int. Trans. Electr. Energy Syst. 2019, 29, 2724. [Google Scholar] [CrossRef]
- Adhipa, K.R.; Jayan, B. Comparison of Sine-wave inverter topologies: Infinite-Level inverter and Differential inverter. In Proceedings of the 2023 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 19–21 April 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Hareesh, A.; Jayan, B. Scalar and Vector Controlled Infinite Level Inverter (ILI) Topology Fed Open-Ended Three-Phase Induction Motor. IEEE Access 2021, 9, 98433–98459. [Google Scholar] [CrossRef]
- Husev, O.; Matiushkin, O.; Roncero-Clemente, C.; Blaabjerg, F.; Vinnikov, D. Novel Family of Single-Stage Buck-Boost Inverters Based on Unfolding Circuit. IEEE Trans. Power Electron. 2019, 34, 7662–7676. [Google Scholar] [CrossRef]
- Abbaszadeh, M.A.; Monfared, M.; Heydari-Doostabad, H. High Buck in Buck and High Boost in Boost Dual-Mode Inverter (Hb2DMI). IEEE Trans. Ind. Electron. 2021, 68, 4838–4847. [Google Scholar] [CrossRef]
- Ajmal, K.T.; Muhammadali, S.K.; Jayanand, B. A Modified Three Phase Infinite level Inverter with Improved DC Bus Utilization. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 26–32. [Google Scholar] [CrossRef]
- Athira, P.S.; Renukadevi, V.; Jayanand, B. Infinite level inverter based DSTATCOM for power quality enhancement. In Proceedings of the 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 1255–1258. [Google Scholar] [CrossRef]
- Reshma, K.; Aiswarya, N.; Jayanand, B. Infinite Level Inverter Based Dynamic Voltage Restorer for Mitigation of Voltage Sag and Swell. In Proceedings of the TENCON 2019-2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 2605–2609. [Google Scholar] [CrossRef]
- Zurita-Bustamante, E.W.; Linares-Flores, J.; Guzmán-Ramírez, E.; Sira-Ramírez, H. A comparison between the GPI and PID controllers for the stabilization of a dc-dc “buck” converter: A field programmable gate array implementation. IEEE Trans. Ind. Electron. 2011, 58, 5251–5262. [Google Scholar] [CrossRef]
- Kim, M.G. Proportional-Integral (PI) compensator design of duty-cycle-controlled buck LED driver. IEEE Trans. Power Electron. 2015, 30, 3852–3859. [Google Scholar] [CrossRef]
- Gayathri Devi, K.S.; Sujatha Therese, P. Optimized PI controller for 7-level inverter to aid grid interactive RES controller. J. Cent. South Univ. 2021, 28, 153–167. [Google Scholar] [CrossRef]
- Ogata, K.; Pinto Bermúdez, E.; Matía, F.; Pearson, E.; Hall, P.; Dorf, R.C.; Pearson, R.H.B. Ingeniería de Control Moderna. 2010. Available online: www.elsolucionario.net (accessed on 4 November 2024).
- Li, X.; Chen, M.; Shinohara, H.; Yoshihara, T. Design of an auto-tunable PID controller for buck converters through a robust H∞ synthesis approach. IEICE Commun. Express 2016, 5, 7–12. [Google Scholar] [CrossRef]
- Yazici, I. Simple and robust voltage controller for buck converters based on the coefficient ratio method. Int. Trans. Electr. Energy Syst. 2020, 30, e12409. [Google Scholar] [CrossRef]
- Altinoz, O.T.; Erdem, H. Particle swarm optimisation-based PID controller tuning for static power converters. Int. J. Power Electron. 2015, 7, 16–35. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Y. Adaptive Backstepping Sliding Mode Control for Boost Converter with Constant Power Load. IEEE Access 2019, 7, 50797–50807. [Google Scholar] [CrossRef]
- Hart, D.W. Electronica De Potencia, 2001 ed.; Pearson Educación, S.A.: Madrid, Spain, 2021. [Google Scholar]
- Rojas, J.; Lucero, C.; Merchán, I. Constant Voltage Battery Charger Energized from an MPPT Photovoltaic System. In Innovation and Research—A Driving Force for Socio-Econo-Technological Development; Zambrano Vizuete, M., Botto-Tobar, M., Diaz Cadena, A., Durakovic, B., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 511, pp. 288–298. [Google Scholar] [CrossRef]
- IEEE 519-2022; IEEE Standard for Harmonic Control in Electric Power Systems. IEEE SA: Piscataway, NJ, USA, 2022.
Topology | Number of Switches | Number of Diodes | Number of Capacitors |
---|---|---|---|
Clamping diode | |||
Floating capacitor | 0 | ||
Cascaded inverters | 0 |
Parameter | Symbol | Value |
---|---|---|
Input voltage | 30 V | |
Duty ratio | ||
Output voltage ripple | 10 mV | |
Inductor current ripple | ||
Switching frequency | 10 KHz |
3 Levels | 5 Levels | 7 Levels | 9 Levels | ∞ Levels | |
---|---|---|---|---|---|
THD (%) | 34.28 | 28.63 | 20.93 | 15.70 | 3.47 |
Fund. (Vrms) | 16.42 | 12.68 | 14.24 | 14.21 | 17.35 |
DC (V) | 0.05 | 0.16 | 0.13 | 0.14 | 0.08 |
Fundamental (%) | 100 | 100 | 100 | 100 | 100 |
h2 (%) | 0.32 | 0.64 | 0.46 | 0.51 | 0.39 |
h3 (%) | 12.32 | 14.04 | 11.78 | 11.30 | 1.26 |
h4 (%) | 11.11 | 1.18 | 0.79 | 0.80 | 0.16 |
h5 (%) | 24.08 | 10.72 | 6.19 | 4.28 | 0.16 |
h6 (%) | 0.90 | 0.20 | 0.23 | 0.08 | 0.32 |
h7 (%) | 5.46 | 12.91 | 3.88 | 2.31 | 0.59 |
h8 (%) | 0.56 | 1.56 | 0.52 | 0.25 | 0.08 |
h9 (%) | 10.18 | 10.78 | 4.62 | 1.24 | 0.36 |
h10 (%) | 1.23 | 0.04 | 0.05 | 0.06 | 0.17 |
h11 (%) | 8.23 | 2.84 | 8.77 | 1.02 | 0.26 |
h12 (%) | 0.42 | 0.54 | 1.33 | 0.27 | 0.17 |
h13 (%) | 2.36 | 4.31 | 6.27 | 0.72 | 0.24 |
h14 (%) | 1.08 | 0.29 | 0.12 | 0.13 | 0.05 |
h15 (%) | 6.66 | 4.81 | 1.80 | 1.58 | 0.26 |
Closed Loop | Open Loop | |||||
---|---|---|---|---|---|---|
Voltage Reference (V) | ||||||
5.880 | 1 | 28.9 | 36.05 | 3.2 | 9.21 | − |
11.76 | 1.2 | 19.1 | 12.24 | 4.4 | 9.01 | − |
17.64 | 2 | 9.61 | − | 5.2 | 8.41 | − |
23.52 | 3 | 6.41 | − | 4.8 | 9.61 | − |
3 Levels | 5 Levels | 7 Levels | ∞ Levels | |
---|---|---|---|---|
THD (%) | 33.51 | 34.54 | 32.77 | 58.04 |
Fund. (Vrms) | 19.83 | 15.55 | 17.01 | 6.246 |
DC (V) | 0.469 | 0.285 | 0.328 | 1.907 |
Fundamental (%) | 100 | 100 | 100 | 100 |
h2 (%) | 1.58 | 0.44 | 5.90 | 11.76 |
h3 (%) | 6.89 | 14.08 | 7.72 | 4.73 |
h4 (%) | 2.57 | 1.05 | 1.71 | 8.83 |
h5 (%) | 17.85 | 15.70 | 0.75 | 4.27 |
h6 (%) | 2.61 | 0.47 | 0.79 | 2.29 |
h7 (%) | 4.83 | 12.67 | 1.57 | 2.21 |
h8 (%) | 0.36 | 3.43 | 1.62 | 2.25 |
h9 (%) | 2.54 | 12.21 | 1.31 | 4.23 |
h10 (%) | 0.78 | 0.45 | 0.43 | 3.21 |
h11 (%) | 0.38 | 3.51 | 1.85 | 1.73 |
h12 (%) | 0.13 | 1.38 | 1.67 | 1.61 |
h13 (%) | 0.11 | 1.72 | 1.38 | 1.54 |
h14 (%) | 0.43 | 0.56 | 0.83 | 1.03 |
h15 (%) | 1.36 | 0.36 | 0.29 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia Pavón, N.G.; Aguila Téllez, A.; Rojas Urbano, J.; Taramuel Obando, V.; Guanga, E. Evaluation of an Infinite-Level Inverter Operation Powered by a DC–DC Converter in Open and Closed Loop. Energies 2024, 17, 5593. https://doi.org/10.3390/en17225593
Valencia Pavón NG, Aguila Téllez A, Rojas Urbano J, Taramuel Obando V, Guanga E. Evaluation of an Infinite-Level Inverter Operation Powered by a DC–DC Converter in Open and Closed Loop. Energies. 2024; 17(22):5593. https://doi.org/10.3390/en17225593
Chicago/Turabian StyleValencia Pavón, Nataly Gabriela, Alexander Aguila Téllez, Javier Rojas Urbano, Víctor Taramuel Obando, and Edwin Guanga. 2024. "Evaluation of an Infinite-Level Inverter Operation Powered by a DC–DC Converter in Open and Closed Loop" Energies 17, no. 22: 5593. https://doi.org/10.3390/en17225593
APA StyleValencia Pavón, N. G., Aguila Téllez, A., Rojas Urbano, J., Taramuel Obando, V., & Guanga, E. (2024). Evaluation of an Infinite-Level Inverter Operation Powered by a DC–DC Converter in Open and Closed Loop. Energies, 17(22), 5593. https://doi.org/10.3390/en17225593