A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection
Abstract
:1. Introduction
2. Geological Background
3. Results
3.1. Physical Properties
3.2. Pore Types
3.3. High-Pressure Mercury Injection Experiment
3.4. Fractal Characteristics and Pore Throat System Classification
4. Discussion
4.1. Evaluation Criteria for the Prediction Effect of the Permeability Model
4.2. Permeability Prediction Based on Early Models
4.3. Permeability Prediction Based on Rn Model Derived from HPMI Parameter
4.4. Permeability Prediction Model Based on Fractal Dimension
4.5. Comparison of Various Permeability Prediction Models
5. Conclusions
- The pores of Chang 7 tight sandstone are not developed. The pore types are dominated by DPs, followed by IPs, RIPs and microfractures. The pore throat of Chang 7 tight sandstone is characterized by good sorting but small size and poor connectivity.
- According to the fractal characteristics, the pore throat system is divided into three parts: small pore throats, medium pore throats and large pore throats. Large pore throats are mainly composed of microfractures. Medium pore throats are dominated by DPs and RIPs. Small pore throats are mainly composed of IPs.
- A good permeability prediction model should be able to reflect information such as pore throat size, pore throat volume and pore throat heterogeneity. The new model based on medium pore throat volume and fractal dimension can accurately predict the permeability of tight sandstones.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, C.; Zou, C.; Li, J.; Li, D.; Zheng, M. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Pet. Sin. 2012, 33, 343–350. [Google Scholar] [CrossRef]
- Chen, Z.J.; Ren, Z.L. Method for calculating single-well producing geological reserves and single-well technically recoverable reserves in tight sandstone gas reservoirs: A case of carboniferous-permian gas reservoirs in yanchang gas field, ordos basin. Xinjiang Pet. Geol. 2022, 43, 360–367. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Dong, D.; Wu, S. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas. Acta Pet. Sin. 2022, 43, 1675–1686. [Google Scholar] [CrossRef]
- US Energy Information Administration. How Much Shale (Tight) Oil is Produced in The United States? Available online: https://www.eia.gov/tools/faqs/faq.php?id=847&t=6 (accessed on 4 September 2019).
- Cao, Y.; Zhu, N.; Zhang, S.; Xi, K.; Xue, X. Diagenesis and reserving space characteristics of tight oil reservoirs of permian lucaogou formation in jimusar sag of junggar basin. China J. Earth Sci. Environ. 2019, 41, 253–266. [Google Scholar] [CrossRef]
- Fu, S.; Jin, Z.; Fu, J.; Li, S.; Yang, W. Transformation of understanding from tight oil to shale oil in the member 7 of yanchang formation in ordos basin and its significance of exploration and development. Acta Pet. Sin. 2021, 42, 561–569. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, B.; Chen, S.; Lin, T.; Zhou, Y.; Qiao, W. Sedimentary enrichment mode and effect analysis of exploration and development: A case study of Fuyu reservoir tight oil in northern Songliao Basin. Acta Sedimentol. Sin. 2021, 39, 112–125. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Eng. 2012, 88, 92–99. [Google Scholar] [CrossRef]
- Coates, G.R.; Galford, J.; Mardon, D.; Marschall, D. A new characterization of bulk-volume irreducible using magnetic resonance. Log. Anal. 1998, 39, 51–63. [Google Scholar]
- Xie, R.; Zhang, S.F.; Zhou, L.; Liu, H.T.; Yao, M.J.; Jiang, X.G. Hydrocarbon accumulation characteristics of tight reservoirs of da’anzhai member of jurassic ziliujing formation in eastern Sichuan Basin. Lithol. Reserv. 2023, 35, 108–119. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Liu, K.; Su, L.; Bai, B.; Zhang, X.; Yuan, X.; Wang, J. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria. J. Pet. Sci. Eng. 2012, 88, 82–91. [Google Scholar] [CrossRef]
- Liu, M.; Xie, R.; Wu, S.; Zhu, R.; Mao, Z.; Wang, C. Permeability prediction from mercury injection capillary pressure curves by partial least squares regression method in tight sandstone reservoirs. J. Pet. Sci. Eng. 2018, 169, 135–145. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Xiao, D.; Gu, M. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites. J. Nat. Gas. Sci. Eng. 2017, 38, 434–449. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, F.; Zai, Y.; Zhou, S. Prediction of tight sandstone permeability based on high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR). Lithol. Reserv. 2020, 32, 122–132. [Google Scholar] [CrossRef]
- He, J.; Ling, K. Measuring permeabilities of Middle-Bakken samples using three different methods. J. Nat. Gas. Sci. Eng. 2016, 31, 28–38. [Google Scholar] [CrossRef]
- Nelson, P.H. Permeability-porosity relationships in sedimentary rocks. Log. Anal. 1994, 35, 38–62. [Google Scholar]
- Hui, G.; Chen, Z.; Wang, Y.; Zhang, D.; Gu, F. An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity. Energy 2023, 266, 126512. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Chen, S.; Hui, G. Predicting long-term production dynamics in tight/shale gas reservoirs with dual-stage attention-based TEN-Seq2Seq model: A case study in Duvernay formation. Geoenergy Sci. Eng. 2023, 223, 211495. [Google Scholar] [CrossRef]
- Lala, A.M.S.; El-Sayed, N.A. Controls of pore throat radius distribution on permeability. J. Pet. Sci. Eng. 2017, 157, 941–950. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.; Li, W.; Hou, T.; Li, Y.; Bai, Y.; Zhu, Y. Determination of permeability in tight sandstone reservoirs using gaussian process regression and high-pressure porosimetry: A case study of the member-7 of yanchang formation in the Jiyuan area of the ordos basin. Bull. Geol. Sci. Technol. 2022, 41, 30–37. [Google Scholar] [CrossRef]
- Wang, J.; Xi, Z.; Lu, D. Pore structure of shale gas reservoirs revealed by constant-speed mercury injection experiments: A case study of wufeng formation shale from northwestern Hunan Province. Geol. Explor. 2021, 57, 450–456. [Google Scholar] [CrossRef]
- Shao, X.; Pang, X.; Li, H.; Zhang, X. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the ordos basin, China. Energy Fuels 2017, 31, 10358–10368. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, Y.; Fu, H.; Jiang, M.; Wang, J.; Sui, S.; Fu, H.; Hao, R.; Guo, M. High pressure mercury injection and scanning electron microscopy applied to characterize micro-and nano-scale pore throats in tight sandstone reservoirs: A case study of the fourth member of shahejie formation in Yi176 block, zhanhua sag, bohai bay basin. Pet. Geol. Exp. 2018, 40, 280–287. [Google Scholar] [CrossRef]
- Purcell, W. Capillary pressures—Their measurement using mercury and the calculation of permeability therefrom. J. Pet. Technol. 1949, 1, 39–48. [Google Scholar] [CrossRef]
- Swanson, B. A simple correlation between permeabilities and mercury capillary pressures. J. Pet. Technol. 1981, 33, 2498–2504. [Google Scholar] [CrossRef]
- Pittman, E.D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bull. 1992, 76, 191–198. [Google Scholar] [CrossRef]
- Guo, B.; Ghalambor, A.; Duan, S. Correlation between sandstone permeability and capillary pressure curves. J. Pet. Sci. Eng. 2004, 43, 239–246. [Google Scholar] [CrossRef]
- Kolodzie, S., Jr. Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle Field, Colorado. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 21–24 September 1980. [Google Scholar]
- Chang, D.; Vinegar, H.J.; Morriss, C.; Straley, C. Effective Porosity, Producible Fluid and Permeability in Carbonates from Nmr Logging. In Proceedings of the SPWLA 35th Annual Logging Symposium, Tulsa, OK, USA, 19 June 1994; p. SPWLA-1994-A. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; pp. 1–532. [Google Scholar]
- Mandelbrot, B.B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid. Mech. 1975, 72, 401–416. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiao, T.; Huang, H.; Qi, Z.; Jiang, T.; Chen, G.; Zhu, Y.; Jia, N. Pore structure and fractal characteristics of ultralow-permeability sandstone reservoirs in the upper triassic yanchang formation, ordos basin. Interpretation 2021, 9, T747–T765. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffland, J. Permeability prediction based on fractal pore-space geometry. Geophysics 1999, 64, 1447–1460. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z.; Li, B.; Han, J.; Zhao, K. Influence of volcanic and hydrothermal activity on organic matter enrichment in the upper triassic yanchang formation, Southern ordos basin, Central China. Mar. Pet. Geol. 2020, 112, 104059. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, X.; Wen, Z.; Guo, W.; Tian, W.; Li, S.; Fan, Y.; Luo, Y. Classification and evaluation of shale oil reservoirs of the Chang 71-2 Sub-Member in the Longdong area. Energies 2022, 15, 5364. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Ran, Y.; Zhou, Z.; Cui, Y. Impact of diagenesis on the reservoir quality of tight oil sandstones: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. J. Pet. Sci. Eng. 2016, 145, 54–65. [Google Scholar] [CrossRef]
- Ji, F.; Zhang, Y. Application of fractal geometry in de⁃ scription of heterogeneity. J. Univ. Pet. China Ed. Nat. Sci. 1994, 18, 161–168. [Google Scholar]
- Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J. Fractal character of fracture surfaces of metals. Nature 1984, 308, 721–722. [Google Scholar] [CrossRef]
- Huang, J.; Dong, D.; Li, J.; Hu, J.; Wang, Y. Reservoir fractal characteristics of continental shale: An example from triassic xujiahe formation shale, Sichuan Basin, China. Nat. Gas. Geosci. 2016, 27, 1611–1618. [Google Scholar] [CrossRef]
- Tian, W.; Wen, Z.; Luo, Y.; Xi, Y.; Han, X. The grading evaluation of physical properties of tight sandstone in chang 7 member of wujiao area in ordos basin. J. Yangtze Univ. (Nat. Sci. Ed.) 2021, 18, 24–32. [Google Scholar]
- Xi, K.; Cao, Y.; Haile, B.G.; Zhu, R.; Jahren, J.; Bjørlykke, K.; Zhang, X.; Hellevang, H. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Mar. Pet. Geol. 2016, 76, 1–15. [Google Scholar] [CrossRef]
- Daigle, H.; Johnson, A. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory. Transp. Porous Media 2015, 111, 669–679. [Google Scholar] [CrossRef]
- Zhou, N.; Lu, S.; Wang, M.; Liu, W.; Guan, Y.; Tan, H.; Wang, Z. Applicability of fractal capillary pressure models to sandstones. J. Pet. Sci. Eng. 2020, 185, 106626. [Google Scholar] [CrossRef]
- Pape, H.; Riepe, L.; Schopper, J.R. Theory of self-similar network structures in sedimentary and igneous rocks and their investigation with microscopical and physical methods. J. Microsc. 1987, 148, 121–147. [Google Scholar] [CrossRef]
Model Name | Expression |
---|---|
Purcell model | |
Winland model | |
Swanson model | |
Thomeer model | |
Pittman model | |
Razaee Model | |
Guo model | |
Coates model | |
SDR model |
Model | Equation | R2 | RMSE | MAPE (%) |
---|---|---|---|---|
R5 | LogK = 0.859 × LogR5 + 0.868 × Logφ − 1.670 | 0.7483 | 0.01096 | 59.83 |
R10 | LogK = 0.842 × LogR10 + 0.851 × Logφ − 1.629 | 0.7462 | 0.01102 | 60.31 |
R15 | LogK = 0.822 × LogR15 + 0.832 × Logφ − 1.587 | 0.7431 | 0.01106 | 60.64 |
R20 | LogK = 0.795 × LogR20 + 0.808 × Logφ − 1.542 | 0.7383 | 0.01116 | 61.52 |
R25 | LogK = 0.760 × LogR25 + 0.779 × Logφ − 1.497 | 0.7312 | 0.01127 | 62.49 |
R30 | LogK = 0.712 × LogR30 + 0.742 × Logφ − 1.453 | 0.7204 | 0.01145 | 64.04 |
R35 | LogK = 0.642 × LogR35 + 0.692 × Logφ − 1.416 | 0.7034 | 0.01172 | 66.64 |
R40 | LogK = 0.545 × LogR40 + 0.656 × Logφ − 1.418 | 0.679 | 0.01212 | 70.88 |
R45 | LogK = 0.383 × LogR45 + 0.753 × Logφ − 1.629 | 0.6601 | 0.01225 | 76.44 |
R50 | LogK = 0.265 × LogR50 + 0.895 × Logφ − 1.856 | 0.6474 | 0.01230 | 82.28 |
Model | Equation | R2 | RMSE | MAPE (%) |
---|---|---|---|---|
Large pore throat | K = −53.515/D3 + 1.886 × V3 + 17.864 | 0.2183 | 0.01645 | 113.46 |
Medium pore throat | K = −0.264/D2 + 0.144 × V2 + 0.106 | 0.7773 | 0.00939 | 46.81 |
Small pore throat | K = −0.142/D1 + 0.014 × V1 + 0.079 | 0.0008 | 0.01978 | 137.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wen, Z.; Tian, W.; Fan, Y.; Gao, H. A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection. Energies 2024, 17, 821. https://doi.org/10.3390/en17040821
Yang Y, Wen Z, Tian W, Fan Y, Gao H. A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection. Energies. 2024; 17(4):821. https://doi.org/10.3390/en17040821
Chicago/Turabian StyleYang, Yuxuan, Zhigang Wen, Weichao Tian, Yunpeng Fan, and Heting Gao. 2024. "A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection" Energies 17, no. 4: 821. https://doi.org/10.3390/en17040821
APA StyleYang, Y., Wen, Z., Tian, W., Fan, Y., & Gao, H. (2024). A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection. Energies, 17(4), 821. https://doi.org/10.3390/en17040821