Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion
Abstract
:1. Introduction
1.1. Motivation: Wind Turbine Blade Leading Edge Erosion
- (i)
- (ii)
- (iii)
- Dynamical operation of wind turbines to reduce rotor speed during periods associated with high material stresses (i.e., intense precipitation at high operating wind speeds) [32]. This erosion-safe mode operation necessarily reduces AEP due to the loss of electricity production during curtailment/deregulation to slow rotor speeds, but may decrease O&M costs by increasing blade coating lifetimes, leading to a net benefit in terms of LCoE [46].
1.2. Objectives
2. Materials and Methods
2.1. Meteorological Observations
2.2. Mapping Atmospheric Drivers to Damage
3. Results
3.1. Simulated Blade Coating Lifetime as a Function of Prevailing Meteorology
3.2. Geospatial Variability of Blade Coating Lifetime
3.3. Temporal Variability in Blade Coating Lifetime Reduction
3.4. Uncertainties in Blade Coating Lifetimes
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthelmie, R.J.; Pryor, S.C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Change 2014, 4, 684–688. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Climate Change Mitigation Potential of Wind Energy. Climate 2021, 9, 136. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report 2024; Global Wind Energy Council: Brussels, Belgium, 2024; p. 168. Available online: https://gwec.net/global-wind-report-2024/ (accessed on 5 September 2024).
- Lazard. Lazard’s Levelized Cost of Energy Analysis—Version 16.0; Zurich, Switzerland; 2023. Available online: https://www.lazard.com/research-insights/levelized-cost-of-energyplus/ (accessed on 5 September 2024).
- Xu, J.; Zou, J.; Ziegler, A.D.; Wu, J.; Zeng, Z. What drives the change of capacity factor of wind turbine in the United States? Environ. Res. Lett. 2023, 18, 064009. [Google Scholar] [CrossRef]
- Wiser, R.; Rand, J.; Seel, J.; Beiter, P.; Baker, E.; Lantz, E.; Gilman, P. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 2021, 6, 555–565. [Google Scholar] [CrossRef]
- Enevoldsen, P.; Xydis, G. Examining the trends of 35 years growth of key wind turbine components. Energy Sustain. Dev. 2019, 50, 18–26. [Google Scholar] [CrossRef]
- Bolinger, M.; Wiser, R.; O’Shaughnessy, E. Levelized cost-based learning analysis of utility-scale wind and solar in the United States. iScience 2022, 25, 104378. [Google Scholar] [CrossRef] [PubMed]
- Wiser, R.H.; Bolinger, M.; Lantz, E. Assessing wind power operating costs in the United States: Results from a survey of wind industry experts. Renew. Energy Focus 2019, 30, 46–57. [Google Scholar] [CrossRef]
- Bron̜dsted, P.; Nijssen, R.P.; Goutianos, S. Advances in Wind Turbine Blade Design and Materials; Woodhead Publishing: Cambridge, UK, 2023. [Google Scholar]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2020, 141, 106445. [Google Scholar] [CrossRef]
- Liu, D.; da Fonseca, L.G. Global Onshore Wind Power Operations & Maintenance (O&M) 2020; Wood Mackenzie: Edinburgh, UK, 2021; Available online: https://www.woodmac.com/reports/power-markets-global-onshore-wind-power-operations-and-maintenance-oandm-2020-467883/ (accessed on 5 September 2024).
- Mishnaevsky, L., Jr.; Thomsen, K. Costs of repair of wind turbine blades: Influence of technology aspects. Wind. Energy 2020, 23, 2247–2255. [Google Scholar] [CrossRef]
- Mishnaevsky Jr, L.; Frost-Jensen Johansen, N.; Fraisse, A.; Fæster, S.; Jensen, T.; Bendixen, B. Technologies of wind turbine blade repair: Practical comparison. Energies 2022, 15, 1767. [Google Scholar] [CrossRef]
- Sun, S.; Wang, T.; Yang, H.; Chu, F. Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function. Renew. Energy 2022, 181, 59–70. [Google Scholar] [CrossRef]
- Santelo, T.N.; de Oliveira, C.M.R.; Maciel, C.D.; de Monteiro, A.J.R.B. Wind turbine failures review and trends. J. Control Autom. Electr. Syst. 2022, 33, 505–521. [Google Scholar] [CrossRef]
- Ozturk, S.; Fthenakis, V. Predicting frequency, time-to-repair and costs of wind turbine failures. Energies 2020, 13, 1149. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Coburn, J.J.; Zhou, X.; Rodgers, M.; Norton, H.; Campobasso, M.S.; López, B.M.; Hasager, C.B.; Mishnaevsky Jr, L. Prioritizing Research for Enhancing the Technology Readiness Level of Wind Turbine Blade Leading-Edge Erosion Solutions. Energies 2024, 17, 6285. [Google Scholar] [CrossRef]
- Maniaci, D.C.; MacDonald, H.; Paquette, J.; Clarke, R. Leading Edge Erosion Classification System; Technical Report from IEA Wind Task 46 Erosion of Wind Turbine Blades; Sandia National Lab: Albuquerque, NM, USA, 2022; 52p, Available online: https://iea-wind.org/task46/t46-results/ (accessed on 5 September 2024).
- Mishnaevsky Jr, L.; Hasager, C.B.; Bak, C.; Tilg, A.-M.; Bech, J.I.; Rad, S.D.; Fæster, S. Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renew. Energy 2021, 169, 953–969. [Google Scholar] [CrossRef]
- Sareen, A.; Sapre, C.A.; Selig, M.S. Effects of leading edge erosion on wind turbine blade performance. Wind Energy 2014, 17, 1531–1542. [Google Scholar] [CrossRef]
- Gaudern, N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. J. Phys. Conf. Ser. 2014, 524, 012031. [Google Scholar] [CrossRef]
- Froese, M. Wind-farm owners can now detect leading-edge erosion from data alone. Windpower Engineering and Development, 14 August 2018. Available online: https://www.windpowerengineering.com/wind-farm-owners-can-now-detect-leading-edge-erosion-from-data-alone/ (accessed on 5 September 2024).
- Campobasso, M.S.; Castorrini, A.; Ortolani, A.; Minisci, E. Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry. Renew. Sustain. Energy Rev. 2023, 178, 113254. [Google Scholar] [CrossRef]
- Xiaoxun, Z.; Xinyu, H.; Xiaoxia, G.; Xing, Y.; Zixu, X.; Yu, W.; Huaxin, L. Research on crack detection method of wind turbine blade based on a deep learning method. Appl. Energy 2022, 328, 120241. [Google Scholar] [CrossRef]
- Kong, K.; Dyer, K.; Payne, C.; Hamerton, I.; Weaver, P.M. Progress and trends in damage detection methods, maintenance, and data-driven monitoring of wind turbine blades–A review. Renew. Energy Focus 2023, 44, 390–412. [Google Scholar] [CrossRef]
- DNV. DNV-RP-0573 Evaluation of Erosion and Delamination for Leading Edge Protection Systems of Rotor Blades; Det Norske Veritas: Høvik, Norway, 2021; 44p. [Google Scholar]
- Lopez, J.C.; Kolios, A.; Wang, L.; Chiachio, M.; Dimitrov, N. Reliability-based leading edge erosion maintenance strategy selection framework. Appl. Energy 2024, 358, 122612. [Google Scholar] [CrossRef]
- Law, H.; Koutsos, V. Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms. Wind Energy 2020, 23, 1955–1965. [Google Scholar] [CrossRef]
- Boopathi, K.; Mishnaevsky Jr, L.; Sumantraa, B.; Premkumar, S.A.; Thamodharan, K.; Balaraman, K. Failure mechanisms of wind turbine blades in India: Climatic, regional, and seasonal variability. Wind Energy 2022, 25, 968–979. [Google Scholar] [CrossRef]
- Walzberg, J.; Cooperman, A.; Watts, L.; Eberle, A.L.; Carpenter, A.; Heath, G.A. Regional representation of wind stakeholders’ end-of-life behaviors and their impact on wind blade circularity. iScience 2022, 25, 104734. [Google Scholar] [CrossRef] [PubMed]
- Bech, J.I.; Hasager, C.B.; Bak, C. Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events. Wind Energy Sci. 2018, 3, 729–748. [Google Scholar] [CrossRef]
- Bartolomé, L.; Teuwen, J. Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades. Wind Energy 2019, 22, 140–151. [Google Scholar] [CrossRef]
- Zhang, S.; Dam-Johansen, K.; Nørkjær, S.; Bernad, P.L., Jr.; Kiil, S. Erosion of wind turbine blade coatings–design and analysis of jet-based laboratory equipment for performance evaluation. Prog. Org. Coat. 2015, 78, 103–115. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Cadence, J.; Dellwik, E.; Hasager, C.B.; Kral, S.T.; Reuder, J.; Rodgers, M.; Veraart, M. Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research. Energies 2022, 15, 8553. [Google Scholar] [CrossRef]
- Letson, F.; Barthelmie, R.J.; Pryor, S.C. RADAR-derived precipitation climatology for wind turbine blade leading edge erosion. Wind Energy Sci. 2020, 5, 331–347. [Google Scholar] [CrossRef]
- Doagou-Rad, S.; Mishnaevsky Jr, L. Rain erosion of wind turbine blades: Computational analysis of parameters controlling the surface degradation. Meccanica 2020, 55, 725–743. [Google Scholar] [CrossRef]
- Verma, A.S.; Castro, S.G.; Jiang, Z.; Teuwen, J.J. Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: A parametric study. Compos. Struct. 2020, 241, 112096. [Google Scholar] [CrossRef]
- Tempelis, A.; Jespersen, K.M.; Mishnaevsky, L., Jr. Fatigue damage mechanics approach to predict the end of incubation and breakthrough of leading edge protection coatings for wind turbine blades. Int. J. Fatigue 2025, 190, 108617. [Google Scholar] [CrossRef]
- Rinker, J.; Dykes, K.L. WindPACT Reference Wind Turbines; NREL/TP-5000-67667; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy18osti/67667.pdf (accessed on 5 September 2024).
- Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci. 1949, 6, 243–248. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Best, A. The size distribution of raindrops. Q. J. R. Meteorol. Soc. 1950, 76, 16–36. [Google Scholar] [CrossRef]
- Springer, G.S.; Baxi, C.B. A model for rain erosion of homogeneous materials. In Erosion, Wear, and Interfaces with Corrosion; ASTM International: West Conshohocken, PA, USA, 1974; pp. 106–124. [Google Scholar]
- Springer, G.S.; Yang, C.-I.; Larsen, P.S. Analysis of rain erosion of coated materials. J. Compos. Mater. 1974, 8, 229–252. [Google Scholar] [CrossRef]
- Letson, F.; Pryor, S.C. From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading Edge Erosion. Energies 2023, 5, 3906. [Google Scholar] [CrossRef]
- Johnston, B.; Foley, A.; Doran, J.; Littler, T. Levelised cost of energy, A challenge for offshore wind. Renew. Energy 2020, 160, 876–885. [Google Scholar] [CrossRef]
- Đukan, M.; Gumber, A.; Egli, F.; Steffen, B. The role of policies in reducing the cost of capital for offshore wind. iScience 2023, 26, 106945. [Google Scholar] [CrossRef] [PubMed]
- Hoen, B.D.; Diffendorfer, J.E.; Rand, J.T.; Kramer, L.A.; Garrity, C.P.; Hunt, H.E. United States Wind Turbine Database (v6.1, November 2023): U.S. Geological Survey, American Clean Power Association, and Lawrence Berkeley National Laboratory Data Release; United States Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Rand, J.T.; Kramer, L.A.; Garrity, C.P.; Hoen, B.D.; Diffendorfer, J.E.; Hunt, H.E.; Spears, M. A continuously updated, geospatially rectified database of utility-scale wind turbines in the United States. Sci. Data 2020, 7, 15. [Google Scholar] [CrossRef]
- Bang, S.D.; Cecil, D.J. Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteorol. Climatol. 2019, 58, 1889–1904. [Google Scholar] [CrossRef]
- Mishnaevsky Jr, L.; Tempelis, A.; Kuthe, N.; Mahajan, P. Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling. Renew. Energy 2023, 215, 118966. [Google Scholar] [CrossRef]
- Frost-Jensen Johansen, N.; Mishnaevsky Jr, L.; Dashtkar, A.; Williams, N.A.; Fæster, S.; Silvello, A.; Cano, I.G.; Hadavinia, H. Nanoengineered graphene-reinforced coating for leading edge protection of wind turbine blades. Coatings 2021, 11, 1104. [Google Scholar] [CrossRef]
- Fæster, S.; Johansen, N.F.J.; Mishnaevsky Jr, L.; Kusano, Y.; Bech, J.I.; Madsen, M.B. Rain erosion of wind turbine blades and the effect of air bubbles in the coatings. Wind Energy 2021, 24, 1071–1082. [Google Scholar] [CrossRef]
- Herring, R.; Dyer, K.; Martin, F.; Ward, C. The increasing importance of leading edge erosion and a review of existing protection solutions. Renew. Sustain. Energy Rev. 2019, 115, 109382. [Google Scholar] [CrossRef]
- Ansari, Q.M.; Sánchez, F.; Mishnaevsky, L., Jr.; Young, T.M. Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion. Renew. Energy 2024, 226, 120378. [Google Scholar] [CrossRef]
- Major, D.; Palacios, J.; Maughmer, M.; Schmitz, S. Aerodynamics of leading-edge protection tapes for wind turbine blades. Wind Eng. 2021, 45, 1296–1316. [Google Scholar] [CrossRef]
- Katsivalis, I.; Chanteli, A.; Finnegan, W.; Young, T.M. Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications. Wind Energy 2022, 25, 1758–1774. [Google Scholar] [CrossRef]
- Coburn, J.J.; Pryor, S.C. Projecting future energy production from operating wind farms in North America: Part 3: Variability. J. Appl. Meteorol. Climatol. 2023, 62, 1523–1537. [Google Scholar] [CrossRef]
- Jeon, H.; Hartman, B.; Cutler, H.; Hill, R.; Hu, Y.; Lu, T.; Shields, M.; Turner, D.D. Estimating the economic impacts of improved wind speed forecasts in the United States electricity sector. J. Renew. Sustain. Energy 2022, 14, 036101. [Google Scholar] [CrossRef]
- Huff, F. Time distribution characteristics of rainfall rates. Water Resour. Res. 1970, 6, 447–454. [Google Scholar] [CrossRef]
- Huff, F.A.; Neill, J.C. Frequency of point and areal mean rainfall rates. Eos Trans. Am. Geophys. Union 1956, 37, 679–681. [Google Scholar]
- Kursinski, A.L.; Zeng, X. Areal estimation of intensity and frequency of summertime precipitation over a midlatitude region. Geophys. Res. Lett. 2006, 33, L22401. [Google Scholar] [CrossRef]
- Cook, N.J. Locating the anemometers of the US ASOS network and classifying their local shelter. Weather 2022, 77, 256–263. [Google Scholar] [CrossRef]
- McNitt, J.A.; Facundo, J. An overview of the Federal Government’s Automated Surface Observing System sustainment activity. In Proceedings of the 13th American Meteorological Society Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Pheonix, AZ, USA, 11–15 January 2009. [Google Scholar]
- Cook, N.J. Curating the TD6405 database of 1-min interval wind observations across the USA for use in Wind Engineering studies. J. Wind. Eng. Ind. Aerodyn. 2022, 224, 104961. [Google Scholar] [CrossRef]
- Schmitt, I.V.; Chester, V. A quality control algorithm for the ASOS ice free wind sensor. In Proceedings of the 13th American Meteorological Society Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Pheonix, AZ, USA, 11–15 January 2009. [Google Scholar]
- National Oceanic Atmospheric Administration. Automated Surface Observing System (ASOS) User’s Guide; National Oceanic Atmospheric Administration: Silver Spring, MD, USA, 1998. [Google Scholar]
- Butler, R.D.; McKee, T.B. ASOS Heated Tipping Bucket Performance Assessment and Impact on Precipitation Climate Continuity; Libraries: NASA 19990025176; Colorado State University: Fort Collins, CO, USA, 1998; Available online: https://apps.dtic.mil/sti/citations/ADA359136 (accessed on 5 September 2024).
- White, S.G.; Winans, L.J.; Fiore Jr, J.V. Development of the all-weather precipitation accumulation gauge for ASOS. In Proceedings of the American Meteorological Society Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, USA, 11–15 January 2004. [Google Scholar]
- Irwin, J.S. A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmos. Environ. 1979, 13, 191–194. [Google Scholar] [CrossRef]
- Letson, F.; Shepherd, T.J.; Barthelmie, R.J.; Pryor, S.C. WRF modelling of deep convection and hail for wind power applications. J. Appl. Meteorol. Climatol. 2020, 59, 1717–1733. [Google Scholar] [CrossRef]
- Pryor, S.; Letson, F.; Shepherd, T.; Barthelmie, R. Evaluation of WRF simulation of deep convection in the US Southern Great Plains. J. Appl. Meteorol. Climatol. 2023, 62, 41–62. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Wind shadows impact planning of large offshore wind farms. Appl. Energy 2024, 359, 122755. [Google Scholar] [CrossRef]
- Eisenberg, D.; Laustsen, S.; Stege, J. Wind turbine blade coating leading edge rain erosion model: Development and validation. Wind Energy 2018, 21, 942–951. [Google Scholar] [CrossRef]
- Castorrini, A.; Venturini, P.; Bonfiglioli, A. Generation of Surface Maps of Erosion Resistance for Wind Turbine Blades under Rain Flows. Energies 2022, 15, 5593. [Google Scholar] [CrossRef]
- Springer, G.S. Erosion by Liquid Impact; John Wiley and Sons: New York, NY, USA, 1976; p. 278. [Google Scholar]
- Herring, R.; Domenech, L.; Renau, J.; Šakalytė, A.; Ward, C.; Dyer, K.; Sánchez, F. Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods. Coatings 2021, 11, 767. [Google Scholar] [CrossRef]
- Hoksbergen, N.; Akkerman, R.; Baran, I. The Springer model for lifetime prediction of wind turbine blade leading edge protection systems: A review and sensitivity study. Materials 2022, 15, 1170. [Google Scholar] [CrossRef] [PubMed]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Marchok, T.; Vecchi, G.A. Characterization of rainfall distribution and flooding associated with US landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res. Atmos. 2011, 116, D23116. [Google Scholar] [CrossRef]
- Brauer, N.S.; Basara, J.B.; Homeyer, C.R.; McFarquhar, G.M.; Kirstetter, P.E. Quantifying precipitation efficiency and drivers of excessive precipitation in post-landfall Hurricane Harvey. J. Hydrometeorol. 2020, 21, 433–452. [Google Scholar] [CrossRef]
- Mass, C. The Weather of the Pacific Northwest; University of Washington Press: Lanham, MD, USA, 2021; 312p, ISBN 9780295748443. [Google Scholar]
- Papadakis, M.; Wong, S.-C.; Rachman, A.; Hung, K.E.; Vu, G.T.; Bidwell, C.S. Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes; NASA, Report #E-15275; Glenn Research Center: Cleveland, OH, USA, 2007. Available online: https://ntrs.nasa.gov/citations/20070034950 (accessed on 5 September 2024).
- Heymsfield, A.; Szakáll, M.; Jost, A.; Giammanco, I.; Wright, R. A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci. 2018, 75, 3861–3885. [Google Scholar] [CrossRef]
- Keegan, M.H.; Nash, D.; Stack, M. On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D Appl. Phys. 2013, 46, 383001. [Google Scholar] [CrossRef]
- Kim, H.; Kedward, K.T. Modeling hail ice impacts and predicting impact damage initiation in composite structures. AIAA J. 2000, 38, 1278–1288. [Google Scholar] [CrossRef]
- Macdonald, J.; Stack, M. Some thoughts on modelling hail impact on surfaces. J. Bio-Tribo-Corros. 2021, 7, 1–7. [Google Scholar] [CrossRef]
- Zhu, X.; Fu, X.; Liu, L.; Xu, K.; Luo, G.; Zhao, Z.; Chen, W. Damage mechanism of composite laminates under multiple ice impacts at high velocity. Int. J. Impact Eng. 2022, 168, 104296. [Google Scholar] [CrossRef]
- Wiser, R.H.; Bolinger, M. Benchmarking Anticipated Wind Project Lifetimes: Results from a Survey of US Wind Industry Professionals; Berkeley Lab, Electricity Markets and Policy Group: San Francisco, CA, USA, 2019. Available online: https://emp.lbl.gov/publications/benchmarking-anticipated-wind-project (accessed on 5 September 2024).
- Hasager, C.; Vejen, F.; Bech, J.; Skrzypiński, W.; Tilg, A.-M.; Nielsen, M. Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas. Renew. Energy 2020, 149, 91–102. [Google Scholar] [CrossRef]
- Hannesdóttir, Á.; Kral, S.T.; Reuder, J.; Hasager, C.B. Rain erosion atlas for wind turbine blades based on ERA5 and NORA3 for Scandinavia. Results Eng. 2024, 22, 102010. [Google Scholar] [CrossRef]
- Bartolomé, L.; Teuwen, J. Methodology for the energetic characterisation of rain erosion on wind turbine blades using meteorological data: A case study for The Netherlands. Wind Energy 2021, 24, 686–698. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pryor, S.C.; Coburn, J.J.; Barthelmie, R.J. Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion. Energies 2025, 18, 425. https://doi.org/10.3390/en18020425
Pryor SC, Coburn JJ, Barthelmie RJ. Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion. Energies. 2025; 18(2):425. https://doi.org/10.3390/en18020425
Chicago/Turabian StylePryor, Sara C., Jacob J. Coburn, and Rebecca J. Barthelmie. 2025. "Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion" Energies 18, no. 2: 425. https://doi.org/10.3390/en18020425
APA StylePryor, S. C., Coburn, J. J., & Barthelmie, R. J. (2025). Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion. Energies, 18(2), 425. https://doi.org/10.3390/en18020425