Tilt–Roll Heliostats and Non-Flat Heliostat Field Topographies for Compact, Energy-Dense Rooftop-Scale and Urban Central Receiver Solar Thermal Systems for Sustainable Industrial Process Heat
Abstract
:1. Introduction
2. Materials and Methods
- MATLAB receives the input of the simulation’s global location, date, time, and heliostat and receiver locations, calculates the sun’s position to high precision with the NREL’s SPA (National Renewable Energy Laboratory’s Solar Position Algorithm) [60], and determines the heliostats’ time-based tracking angles and inverse kinematics as developed by the primary author in [46], importing the Himawari solar radiation dataset [61].
- The sun’s position and power and the heliostat and receiver positions and tracking angles are passed to OpticStudio’s ray-tracing engine. OpticStudio’s 3D visualization tools are used to verify the heliostat field’s tracking and topography.
- OpticStudio executes the ray trace, counts the rays interacting with the same optical objects in the same order (ray accounting), and then passes the data back to MATLAB.
- Annualized results are created by repeating steps 1–3 for each sunlit hour of the day, for 21 March, 21 June, 21 September, and 21 December, similar to [62]. Testing shows that in these rooftop system scenarios, increasing the simulation interval from every month to every three months reduces simulation time by 2/3rds with a minor 1.3% increase in net efficiency and total energy (see Appendix A, Rows 1 and 2), while still producing usable annual results. This is expected as the simulation outputs vary in a smooth and continuous manner as the sun’s position moves throughout the day and year. The months above capture the bounding points of the insolation and simulation space: the maximum insolation of the summer solstice, the minimum insolation of the winter solstice, and the equal day and night lengths of the equinoxes. Since this work is comparing heliostat layouts, increasing the simulation interval does not appreciably affect final results.
- MATLAB post-processes the simulation year’s data, first totaling the hourly flux for the various ray paths to determine instantaneous/hourly efficiencies, as per [62,63]. These hourly results are aggregated into daily results using a minor variation of the methods in [38]. The daily results are then annualized to yearly results. Individual and collective heliostat metrics are calculated (such as shading, cosine, blocking, optical intercept, and total optical efficiencies) on an hourly, daily/monthly, and annualized basis.
- Sun shape: This is a pillbox shape with an angular extent of 0.25 degrees (4.3633 milliradians). A pillbox shape is a common sun shape that is simpler to model in the OpticStudio software, which is not intrinsically designed for solar applications. The angular extant value used is approximately 1% less than the typical value of 4.65 milliradians [63].
- Heliostat articulation: It is first rotated about one axis (aligned with the North–South or East–West axis) and then about the translated, orthogonal axis. Pivot joints to surface offsets are set to 1 mm, while real world systems would be slightly larger and potentially at both the 1st and 2nd joints below the reflector surface on the center pedestal, shown in Figure 12.
- Heliostat range of motion: Full necessary range of motion allowed, not constrained by any type of physical actuator or drive geometry limitations, as per Figure 12.
- Heliostat-aiming algorithm: Pointed to the center of the closest receiver for simplification, although it is understood that in practical applications aiming techniques can be employed to prevent hot-spots on the receiver.
- Canting: No heliostat canting or focusing of the reflective surface of the heliostat, implying that the heliostat’s optical image on the receiver has not undergone any concentration. Canting or focusing can be employed later to increase concentration ratios and output temperatures.
- Heliostat packing: Arranged in a simple rectangular grid layout when viewed from above, as in Figure 13. This type of layout packs well with Tilt–Roll heliostats, although other layouts are possible.
- Receiver aiming: The receiver for a group of heliostats is pointed to the heliostat closest to the geometric center or arithmetic mean of the position of those heliostats. In an ideal world, the receiver normal would be pointed directly towards each heliostat. As this is not possible for the standard flat receivers simulated here, they are instead pointed to the geometric center of the group of heliostats they are closest to.
- Cloudiness: this is due to clouds preventing the sun’s direct rays from hitting the heliostats.
- Shading: this is the result of one heliostat preventing the sun’s direct rays from hitting the reflective surface of another heliostat, as per Figure 8.
- Cosine: this is the reduction in a heliostat’s reflected area as viewed from the sun and is equal to the cosine of the angle of incidence, which is the angle between the heliostat’s normal and the ray from the sun to the center of the heliostat, as shown in Figure 14.
- Reflectivity: due to imperfect heliostat surface reflector optics (surface flatness/specularity) and dust soiling, this often includes an availability term for reliability and maintenance.
- Blocking: this describes rays that are reflected from a heliostat and then hit the backside of another heliostat instead of the receiver target, again as per Figure 8.
- Atmospheric attenuation: This occurs due to the natural absorption and scattering of the sun’s rays as they strike gas molecules in the atmosphere between the heliostat and receiver. Due to the small physical dimensions of the optical systems studied here, the atmospheric losses in these rooftop systems were calculated to be less than 0.0018% using the methods in [64], and were therefore not included.
- Spillage: this is unblocked radiation that is reflected from the heliostats but misses the intended receiver aperture.
- Absorption/receiver: This relates to energy striking the receiver that is not absorbed by the heat collection media. This thermal aspect is not included in this study, which is focused on the optical properties of the system.
- 160: 13 × 13 matrix of 1.5 m × 1.5 m Tilt–Roll heliostats.
- 194: 13 × 15 matrix of 1.5 m × 1.5 m Tilt–Roll heliostats.
- 220: 13 × 17 matrix of 1.5 m × 1.5 m Tilt–Roll heliostats, with the heliostat size along one axis maximized to the largest possible degree without interference during articulation in that direction; this is the largest number of this size heliostat that will fit within the bounded area.
- 220-Max: the same 13 × 17 matrix with the dimensions of the second axis of the heliostat also maximized, to 1.5 m × 1.625 m, which is to the largest possible degree without interference between adjacent heliostats during articulation movement about both axes.
3. Results
3.1. Developed Tool Validation
3.2. Simulation Results
- Non-flat heliostat field shape: SCB Efficiencies for the non-flat, linear scenarios were significantly lower than for both the flat and non-flat parabolic scenarios and were characterized by lower cosine and blocking efficiencies.
- Parabolic heliostat field shape: Parabolic layouts had decreased cosine efficiencies which were countered by significantly increased blocking efficiencies, leading to a strong net efficiency gain over the flat and non-flat linear scenarios.
- Parabolic heliostat field shape direction: A parabolic heliostat field shape with a its curve along the North–South direction (focal line in the East–West direction) always performed better than when the parabolic curve lay along the East–West direction (focal line in the North–South direction).
- Separate North–South parabolic heliostat field shape: The SCB Efficiency could be very slightly further optimized by using separate parabolic constants for the Northern and Southern halves of the heliostat field, raising Northern-half heliostat heights and lowering Southern-half heliostat heights.
- “Bowl” heliostat field shape: Additional minor improvements could be made by combining parabolic curves in both the North–South and East–West directions to create a “bowl” shape, yielding another very minor improvement in SCB Efficiency. The shading efficiency of the bowl shape was better than that with only the North–South or East–West parabolas alone, although the blocking efficiencies were worse by a similar amount, effectively negating any gains.
3.2.1. Quantity and Size of Tilt–Roll Heliostats
3.2.2. Non-Flat Heliostat Topographies
3.3. Summary of Optimization for Non-Flat Topographies with Tilt–Roll Heliostats
3.4. Comparison with Azimuth–Elevation Heliostats
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Abbreviated Simulation Data
Number | Initial Heliostat Articulation | South Shape | South Shape Constant | North Shape | North Shape Constant | East–West Shape | East–West Shape Constant | Bowl Calculation Type | Receiver Height (m) | Number of Heliostats | Heliostat Length (y-axis, m) | Heliostat Width (x-axis, m) | Latitude North (Degrees) | Shading Efficiency (%) | Cosine Efficiency (%) | Blocking Efficiency (%) | S × C × B Efficiency (%) | Effective SCB Area (m2) | Heliostat Density (%) | Annual Energy at the Receivers (kWh) | Solar Utilization (kWh/m2/year) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 * | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.6 | 78.4 | 83.6 | 56.7 | 204 | 53.3 | 437,827 | 2591 |
2 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 85.5 | 78.2 | 83.6 | 55.9 | 201 | 53.3 | 436,985 | 2586 |
3 * | NS | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.8 | 77.8 | 85.8 | 58.0 | 209 | 53.3 | 447,944 | 2651 |
4 * | NS | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.8 | 77.3 | 87.9 | 59.0 | 212 | 53.3 | 456,240 | 2700 |
5 * | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.8 | 76.7 | 89.8 | 59.7 | 215 | 53.3 | 462,149 | 2735 |
6 * | NS | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.7 | 76.1 | 91.3 | 60.2 | 217 | 53.3 | 465,497 | 2754 |
7 * | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.4 | 75.4 | 92.5 | 60.3 | 217 | 53.3 | 465,886 | 2757 |
8 * | NS | Para | 0.030 | Para | 0.030 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.2 | 74.8 | 93.2 | 60.0 | 216 | 53.3 | 463,948 | 2745 |
9 | NS | Flat | 0 | Flat | 0 | Flat | 0.025 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 85.5 | 78.2 | 83.6 | 55.9 | 201 | 53.3 | 436,985 | 2586 |
10 * | NS | Linear | 0.360 | Linear | 0.360 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.4 | 73.0 | 82.3 | 51.9 | 187 | 53.3 | 398,447 | 2358 |
11 * | NS | Linear | 0.300 | Linear | 0.300 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.6 | 74.0 | 82.9 | 53.2 | 192 | 53.3 | 407,566 | 2412 |
12 * | NS | Linear | 0.250 | Linear | 0.250 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 86.8 | 74.9 | 83.3 | 54.1 | 195 | 53.3 | 414,668 | 2454 |
13 | NS | Linear | 0.250 | Linear | 0.250 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 85.9 | 74.8 | 83.4 | 53.6 | 193 | 53.3 | 414,265 | 2451 |
14 | NS | Linear | 0.250 | Linear | 0.250 | Flat | 0 | n/a | 4.83 | 160 | 1.5 | 1.5 | 15.55 | 85.8 | 76.9 | 90.0 | 59.5 | 214 | 53.3 | 464,234 | 2747 |
15 | NS | Linear | 0.250 | Linear | 0.250 | Flat | 0 | n/a | 5.83 | 160 | 1.5 | 1.5 | 15.55 | 85.8 | 78.8 | 94.2 | 63.7 | 229 | 53.3 | 501,551 | 2968 |
16 | NS | Linear | 0.250 | Linear | 0.250 | Flat | 0 | n/a | 6.83 | 160 | 1.5 | 1.5 | 15.55 | 85.8 | 80.3 | 96.9 | 66.7 | 240 | 53.3 | 528,442 | 3127 |
17 | NS | Linear | 0.250 | Linear | 0.250 | Flat | 0 | n/a | 7.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 81.6 | 98.4 | 68.8 | 248 | 53.3 | 547,233 | 3238 |
18 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 3.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 78.0 | 84.8 | 56.6 | 204 | 53.3 | 442,262 | 2617 |
19 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 4.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 79.7 | 90.7 | 61.9 | 223 | 53.3 | 489,081 | 2894 |
20 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 5.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 81.2 | 94.5 | 65.7 | 237 | 53.3 | 522,975 | 3095 |
21 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 6.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 82.4 | 97.0 | 68.4 | 246 | 53.3 | 547,064 | 3237 |
22 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 7.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 83.3 | 98.4 | 70.2 | 253 | 53.3 | 564,191 | 3338 |
23 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 8.83 | 160 | 1.5 | 1.5 | 15.55 | 85.6 | 83.8 | 99.0 | 71.1 | 256 | 53.3 | 571,574 | 3382 |
24 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 9.83 | 160 | 1.5 | 1.5 | 15.55 | 85.7 | 84.6 | 99.6 | 72.2 | 260 | 53.3 | 581,621 | 3442 |
25 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 10.83 | 160 | 1.5 | 1.5 | 15.55 | 85.7 | 85.2 | 99.9 | 73.0 | 263 | 53.3 | 588,560 | 3483 |
26 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 4.83 | 194 | 1.5 | 1.5 | 15.55 | 82.0 | 80.2 | 87.6 | 57.6 | 252 | 64.6 | 549,039 | 3249 |
27 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.0 | 81.0 | 89.6 | 61.0 | 266 | 64.6 | 582,500 | 3447 |
28 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 82.0 | 81.0 | 90.1 | 59.9 | 261 | 64.6 | 575,000 | 3402 |
29 | NS | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 82.2 | 80.6 | 91.9 | 60.9 | 266 | 64.6 | 584,539 | 3459 |
30 | NS | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 82.4 | 80.1 | 93.4 | 61.7 | 269 | 64.6 | 590,499 | 3494 |
31 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 82.4 | 79.7 | 94.4 | 62.0 | 271 | 64.6 | 592,097 | 3504 |
32 | NS | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 82.3 | 79.2 | 95.1 | 61.9 | 270 | 64.6 | 589,213 | 3486 |
33 | NS | Flat | 0 | Flat | 0 | Para | 0.005 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 82.7 | 80.6 | 91.4 | 60.9 | 266 | 64.6 | 585,908 | 3467 |
34 | NS | Flat | 0 | Flat | 0 | Para | 0.010 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 83.2 | 80.1 | 92.6 | 61.7 | 269 | 64.6 | 593,828 | 3514 |
35 | NS | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 83.5 | 79.6 | 93.7 | 62.3 | 272 | 64.6 | 598,586 | 3542 |
36 | NS | Flat | 0 | Flat | 0 | Para | 0.020 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 83.8 | 79.1 | 94.5 | 62.6 | 273 | 64.6 | 600,013 | 3550 |
37 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 83.9 | 78.5 | 95.1 | 62.7 | 274 | 64.6 | 598,301 | 3540 |
38 | NS | Flat | 0 | Flat | 0 | Para | 0.030 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.0 | 78.0 | 95.6 | 62.6 | 273 | 64.6 | 593,985 | 3515 |
39 | EW | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.4 | 80.6 | 91.5 | 62.2 | 271 | 0.0 | 594,139 | 3516 |
40 | EW | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.6 | 80.1 | 93.1 | 63.1 | 276 | 0.0 | 603,133 | 3569 |
41 | EW | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.6 | 79.7 | 94.5 | 63.7 | 278 | 0.0 | 608,150 | 3599 |
42 | EW | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.5 | 79.2 | 95.6 | 63.9 | 279 | 0.0 | 608,491 | 3601 |
43 | EW | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.3 | 78.7 | 96.2 | 63.8 | 278 | 0.0 | 605,291 | 3582 |
44 | EW | Flat | 0 | Flat | 0 | Para | 0.005 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 84.8 | 80.5 | 90.9 | 62.1 | 271 | 0.0 | 592,555 | 3506 |
45 | EW | Flat | 0 | Flat | 0 | Para | 0.010 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 85.3 | 80.1 | 92.0 | 62.8 | 274 | 0.0 | 599,159 | 3545 |
46 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 85.7 | 79.5 | 92.9 | 63.3 | 276 | 0.0 | 601,864 | 3561 |
47 | EW | Flat | 0 | Flat | 0 | Para | 0.020 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 85.9 | 79.0 | 93.5 | 63.4 | 277 | 0.0 | 600,746 | 3555 |
48 | EW | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.38 | 194 | 1.5 | 1.5 | 15.55 | 85.9 | 78.4 | 93.9 | 63.3 | 276 | 0.0 | 596,019 | 3527 |
49 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 4.83 | 220 | 1.5 | 1.5 | 15.55 | 81.9 | 80.3 | 82.8 | 54.5 | 270 | 73.2 | 581,716 | 3442 |
50 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 81.9 | 81.1 | 85.4 | 56.7 | 281 | 73.2 | 611,042 | 3616 |
51 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.83 | 220 | 1.5 | 1.5 | 15.55 | 81.9 | 81.7 | 87.1 | 58.3 | 289 | 73.2 | 632,051 | 3740 |
52 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 6.83 | 220 | 1.5 | 1.5 | 15.55 | 82.0 | 82.8 | 90.1 | 61.2 | 303 | 73.2 | 669,830 | 3963 |
53 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 7.83 | 220 | 1.5 | 1.5 | 15.55 | 82.0 | 83.7 | 92.2 | 63.3 | 313 | 73.2 | 697,527 | 4127 |
54 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 8.83 | 220 | 1.5 | 1.5 | 15.55 | 81.9 | 84.5 | 93.8 | 65.0 | 322 | 73.2 | 719,013 | 4255 |
55 | EW | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.2 | 80.7 | 87.5 | 58.0 | 287 | 73.2 | 625,453 | 3701 |
56 | EW | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.4 | 80.3 | 89.5 | 59.2 | 293 | 73.2 | 637,648 | 3773 |
57 | EW | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.4 | 79.8 | 91.4 | 60.1 | 298 | 73.2 | 647,497 | 3831 |
58 | EW | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.4 | 79.3 | 93.1 | 60.8 | 301 | 73.2 | 653,762 | 3868 |
59 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.3 | 78.8 | 94.4 | 61.2 | 303 | 73.2 | 656,028 | 3882 |
60 | EW | Para | 0.030 | Para | 0.030 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.1 | 78.3 | 95.4 | 61.3 | 304 | 73.2 | 654,364 | 3872 |
61 | EW | Para | 0.035 | Para | 0.035 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 81.8 | 77.8 | 96.0 | 61.1 | 302 | 73.2 | 648,329 | 3836 |
62 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 4.83 | 220 | 1.5 | 1.5 | 15.55 | 82.3 | 77.9 | 92.6 | 59.3 | 294 | 73.2 | 629,599 | 3725 |
63 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 5.83 | 220 | 1.5 | 1.5 | 15.55 | 82.2 | 79.5 | 95.6 | 62.5 | 310 | 73.2 | 674,591 | 3992 |
64 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 6.83 | 220 | 1.5 | 1.5 | 15.55 | 82.2 | 80.9 | 97.5 | 64.8 | 321 | 73.2 | 706,597 | 4181 |
65 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 7.83 | 220 | 1.5 | 1.5 | 15.55 | 82.1 | 82.1 | 98.5 | 66.4 | 329 | 73.2 | 728,828 | 4313 |
66 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 8.83 | 220 | 1.5 | 1.5 | 15.55 | 82.0 | 83.1 | 99.1 | 67.5 | 334 | 73.2 | 744,640 | 4406 |
67 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 9.83 | 220 | 1.5 | 1.5 | 15.55 | 81.9 | 83.9 | 99.5 | 68.4 | 339 | 73.2 | 756,191 | 4475 |
68 | EW | Flat | 0 | Flat | 0 | Para | 0.005 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 82.7 | 80.7 | 86.5 | 57.7 | 286 | 73.2 | 622,036 | 3681 |
69 | EW | Flat | 0 | Flat | 0 | Para | 0.010 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 83.3 | 80.2 | 87.4 | 58.3 | 289 | 73.2 | 629,399 | 3724 |
70 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 83.6 | 79.7 | 88.1 | 58.7 | 290 | 73.2 | 632,534 | 3743 |
71 | EW | Flat | 0 | Flat | 0 | Para | 0.020 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 83.8 | 79.1 | 88.6 | 58.7 | 291 | 73.2 | 631,344 | 3736 |
72 | EW | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 83.7 | 78.6 | 88.8 | 58.4 | 289 | 73.2 | 625,242 | 3700 |
73 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 4.83 | 220 | 1.5 | 1.5 | 15.55 | 83.7 | 78.8 | 86.1 | 56.8 | 281 | 73.2 | 607,509 | 3595 |
74 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.83 | 220 | 1.5 | 1.5 | 15.55 | 83.5 | 80.3 | 89.4 | 60.0 | 297 | 73.2 | 649,668 | 3844 |
75 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 6.83 | 220 | 1.5 | 1.5 | 15.55 | 83.3 | 81.6 | 91.4 | 62.2 | 308 | 73.2 | 679,258 | 4019 |
76 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 7.83 | 220 | 1.5 | 1.5 | 15.55 | 83.2 | 82.7 | 92.7 | 63.8 | 316 | 73.2 | 700,190 | 4143 |
77 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 8.83 | 220 | 1.5 | 1.5 | 15.55 | 83.0 | 83.6 | 93.6 | 65.0 | 322 | 73.2 | 716,651 | 4241 |
78 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 9.83 | 220 | 1.5 | 1.5 | 15.55 | 82.9 | 84.4 | 94.5 | 66.1 | 327 | 73.2 | 730,515 | 4323 |
79 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 4.83 | 220 | 1.5 | 1.5 | 15.55 | 77.7 | 80.4 | 84.4 | 52.7 | 261 | 73.2 | 567,384 | 3357 |
80 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 77.6 | 81.1 | 87.1 | 54.8 | 271 | 73.2 | 595,916 | 3526 |
81 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.83 | 220 | 1.5 | 1.5 | 15.55 | 77.5 | 81.7 | 89.0 | 56.4 | 279 | 73.2 | 616,349 | 3647 |
82 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 6.83 | 220 | 1.5 | 1.5 | 15.55 | 77.4 | 82.8 | 92.2 | 59.1 | 292 | 73.2 | 652,760 | 3862 |
83 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 7.83 | 220 | 1.5 | 1.5 | 15.55 | 77.2 | 83.7 | 94.4 | 61.1 | 302 | 73.2 | 679,281 | 4019 |
84 | NS | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 77.8 | 80.7 | 89.0 | 55.9 | 277 | 73.2 | 606,705 | 3590 |
85 | NS | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 77.9 | 80.3 | 90.5 | 56.6 | 280 | 73.2 | 613,756 | 3632 |
86 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 78.0 | 79.8 | 91.5 | 56.9 | 282 | 73.2 | 616,096 | 3646 |
87 | NS | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 77.8 | 79.3 | 92.1 | 56.8 | 281 | 73.2 | 613,267 | 3629 |
88 | NS | Flat | 0 | Flat | 0 | Para | 0.005 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 78.2 | 80.7 | 88.5 | 55.8 | 276 | 73.2 | 608,775 | 3602 |
89 | NS | Flat | 0 | Flat | 0 | Para | 0.010 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 78.7 | 80.2 | 89.8 | 56.7 | 281 | 73.2 | 619,138 | 3664 |
90 | NS | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 79.1 | 79.8 | 91.1 | 57.4 | 284 | 73.2 | 627,234 | 3711 |
91 | NS | Flat | 0 | Flat | 0 | Para | 0.020 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 79.5 | 79.2 | 92.3 | 58.1 | 288 | 73.2 | 633,057 | 3746 |
92 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 79.8 | 78.7 | 93.4 | 58.6 | 290 | 73.2 | 635,750 | 3762 |
93 | NS | Flat | 0 | Flat | 0 | Para | 0.030 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 80.1 | 78.1 | 94.4 | 59.0 | 292 | 73.2 | 635,498 | 3760 |
94 | NS | Flat | 0 | Flat | 0 | Para | 0.035 | n/a | 5.38 | 220 | 1.5 | 1.5 | 15.55 | 80.3 | 77.6 | 94.9 | 59.1 | 292 | 73.2 | 632,056 | 3740 |
95 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 4.83 | 220 | 1.5 | 1.5 | 15.55 | 80.0 | 77.8 | 91.1 | 56.7 | 281 | 73.2 | 610,172 | 3610 |
96 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.83 | 220 | 1.5 | 1.5 | 15.55 | 79.6 | 79.4 | 94.9 | 60.0 | 297 | 73.2 | 653,662 | 3868 |
97 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 6.83 | 220 | 1.5 | 1.5 | 15.55 | 79.2 | 80.8 | 97.1 | 62.2 | 308 | 73.2 | 684,248 | 4049 |
98 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 7.83 | 220 | 1.5 | 1.5 | 15.55 | 78.9 | 82.0 | 98.4 | 63.7 | 315 | 73.2 | 705,430 | 4174 |
99 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 8.83 | 220 | 1.5 | 1.5 | 15.55 | 78.7 | 83.0 | 99.1 | 64.8 | 321 | 73.2 | 719,961 | 4260 |
100 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 9.83 | 220 | 1.5 | 1.5 | 15.55 | 78.5 | 83.9 | 99.5 | 65.6 | 324 | 73.2 | 730,696 | 4324 |
101 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 4.83 | 220 | 1.5 | 1.5 | 15.55 | 78.0 | 78.9 | 89.6 | 55.2 | 273 | 73.2 | 592,748 | 3507 |
102 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.83 | 220 | 1.5 | 1.5 | 15.55 | 77.9 | 80.4 | 92.7 | 58.1 | 287 | 73.2 | 631,826 | 3739 |
103 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 6.83 | 220 | 1.5 | 1.5 | 15.55 | 77.7 | 81.7 | 94.4 | 60.0 | 297 | 73.2 | 658,725 | 3898 |
104 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 7.83 | 220 | 1.5 | 1.5 | 15.55 | 77.5 | 82.8 | 95.5 | 61.3 | 303 | 73.2 | 678,392 | 4014 |
105 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 8.83 | 220 | 1.5 | 1.5 | 15.55 | 77.4 | 83.7 | 96.3 | 62.4 | 309 | 73.2 | 694,403 | 4109 |
106 | NS | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 76.6 | 81.2 | 85.1 | 53.0 | 284 | 79.3 | 618,969 | 3663 |
107 | NS | Flat | 0 | Flat | 0 | Para | 0.005 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 77.2 | 80.8 | 86.5 | 53.9 | 289 | 0.0 | 632,379 | 3742 |
108 | NS | Flat | 0 | Flat | 0 | Para | 0.010 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 77.7 | 80.3 | 87.7 | 54.7 | 294 | 0.0 | 643,203 | 3806 |
109 | NS | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 78.1 | 79.8 | 88.9 | 55.5 | 297 | 79.3 | 651,811 | 3857 |
110 | NS | Flat | 0 | Flat | 0 | Para | 0.020 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 78.5 | 79.3 | 90.1 | 56.1 | 301 | 79.3 | 658,099 | 3894 |
111 | NS | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 78.9 | 78.7 | 91.2 | 56.6 | 304 | 79.3 | 661,329 | 3913 |
112 | NS | Flat | 0 | Flat | 0 | Para | 0.030 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 79.1 | 78.2 | 92.3 | 57.1 | 306 | 79.3 | 661,905 | 3917 |
113 | NS | Flat | 0 | Flat | 0 | Para | 0.035 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 79.3 | 77.6 | 93.0 | 57.2 | 307 | 79.3 | 659,667 | 3903 |
114 | NS | Flat | 0 | Flat | 0 | Para | 0.040 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 79.5 | 77.0 | 93.4 | 57.1 | 306 | 79.3 | 654,355 | 3872 |
115 | NS | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 77.0 | 80.8 | 87.0 | 54.1 | 290 | 79.3 | 631,865 | 3739 |
116 | NS | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 77.2 | 80.3 | 88.8 | 55.0 | 295 | 79.3 | 641,975 | 3799 |
117 | NS | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 77.2 | 79.9 | 90.2 | 55.6 | 298 | 79.3 | 647,666 | 3832 |
118 | NS | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 77.0 | 79.4 | 91.2 | 55.8 | 299 | 79.3 | 648,321 | 3836 |
119 | NS | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 76.8 | 78.8 | 91.8 | 55.6 | 298 | 79.3 | 643,549 | 3808 |
120 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.0 | 81.2 | 83.8 | 54.4 | 292 | 79.3 | 631,560 | 3737 |
121 | EW | Para | 0.005 | Para | 0.005 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.3 | 80.8 | 85.9 | 55.7 | 299 | 79.3 | 646,823 | 3827 |
122 | EW | Para | 0.010 | Para | 0.010 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.5 | 80.3 | 87.9 | 56.9 | 305 | 79.3 | 659,770 | 3904 |
123 | EW | Para | 0.015 | Para | 0.015 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.6 | 79.9 | 89.8 | 57.8 | 310 | 79.3 | 670,291 | 3966 |
124 | EW | Para | 0.020 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.5 | 79.4 | 91.5 | 58.5 | 314 | 79.3 | 677,363 | 4008 |
125 | EW | Para | 0.025 | Para | 0.025 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.4 | 78.9 | 92.9 | 59.0 | 316 | 79.3 | 680,495 | 4027 |
126 | EW | Para | 0.030 | Para | 0.030 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.3 | 78.4 | 94.0 | 59.1 | 317 | 79.3 | 679,762 | 4022 |
127 | EW | Para | 0.035 | Para | 0.035 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.1 | 77.8 | 94.6 | 59.0 | 316 | 79.3 | 675,054 | 3994 |
128 | EW | Flat | 0 | Flat | 0 | Para | 0.005 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.7 | 80.7 | 84.9 | 55.4 | 297 | 79.3 | 643,514 | 3808 |
129 | EW | Flat | 0 | Flat | 0 | Para | 0.010 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.3 | 80.3 | 85.9 | 56.0 | 300 | 79.3 | 652,383 | 3860 |
130 | EW | Flat | 0 | Flat | 0 | Para | 0.015 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.7 | 79.8 | 86.7 | 56.5 | 303 | 79.3 | 657,868 | 3893 |
131 | EW | Flat | 0 | Flat | 0 | Para | 0.020 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 82.0 | 79.2 | 87.3 | 56.7 | 304 | 79.3 | 659,807 | 3904 |
132 | EW | Flat | 0 | Flat | 0 | Para | 0.025 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 82.1 | 78.7 | 87.8 | 56.7 | 304 | 79.3 | 657,408 | 3890 |
133 | EW | Flat | 0 | Flat | 0 | Para | 0.030 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 82.1 | 78.1 | 88.2 | 56.5 | 303 | 79.3 | 650,999 | 3852 |
134 | EW | Para | 0.035 | Para | 0.035 | Para | 0.025 | Max | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.3 | 76.6 | 94.7 | 58.9 | 316 | 79.3 | 673,660 | 3986 |
135 | EW | Para | 0.030 | Para | 0.030 | Para | 0.025 | Min | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.9 | 80.0 | 88.1 | 57.0 | 306 | 79.3 | 663,139 | 3924 |
136 | EW | Para | 0.030 | Para | 0.030 | Para | 0.025 | Avg | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 82.1 | 78.6 | 92.1 | 59.4 | 319 | 79.3 | 690,366 | 4085 |
137 | EW | Para | 0.030 | Para | 0.030 | Para | 0.025 | Avg ** | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.5 | 77.5 | 93.4 | 59.0 | 316 | 79.3 | 678,235 | 4013 |
138 | EW | Para | 0.030 | Para | 0.030 | Para | 0.020 | Avg | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.9 | 78.9 | 91.7 | 59.2 | 318 | 79.3 | 688,229 | 4072 |
139 | EW | Para | 0.030 | Para | 0.030 | Para | 0.015 | Avg | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.6 | 79.1 | 91.4 | 59.0 | 316 | 79.3 | 685,013 | 4053 |
140 | EW | Para | 0.030 | Para | 0.030 | Para | 0.010 | Avg | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.3 | 79.4 | 90.9 | 58.7 | 315 | 79.3 | 680,889 | 4029 |
141 | EW | Para | 0.030 | Para | 0.030 | Para | 0.005 | Avg | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.9 | 79.6 | 90.4 | 58.3 | 312 | 79.3 | 675,987 | 4000 |
142 | EW | Para | 0.030 | Para | 0.030 | Para | 0.025 | Max | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.5 | 77.0 | 93.9 | 58.9 | 316 | 79.3 | 676,805 | 4005 |
143 | EW | Para | 0.030 | Para | 0.030 | Para | 0.020 | Max | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.3 | 77.4 | 94.0 | 59.2 | 318 | 79.3 | 681,426 | 4032 |
144 | EW | Para | 0.030 | Para | 0.030 | Para | 0.015 | Max | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.1 | 77.8 | 94.1 | 59.3 | 318 | 79.3 | 682,677 | 4040 |
145 | EW | Para | 0.030 | Para | 0.030 | Para | 0.010 | Max | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.8 | 78.1 | 94.1 | 59.4 | 318 | 79.3 | 683,062 | 4042 |
146 | EW | Para | 0.030 | Para | 0.030 | Para | 0.005 | Max | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.5 | 78.2 | 94.1 | 59.3 | 318 | 79.3 | 681,456 | 4032 |
147 | EW | Para | 0.030 | Para | 0.030 | Para | 0.025 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 83.2 | 77.0 | 95.1 | 60.9 | 301 | 73.2 | 645,665 | 3821 |
148 | EW | Para | 0.030 | Para | 0.030 | Para | 0.020 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 83.1 | 77.4 | 95.3 | 61.3 | 303 | 73.2 | 652,216 | 3859 |
149 | EW | Para | 0.030 | Para | 0.030 | Para | 0.015 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 82.9 | 77.7 | 95.5 | 61.5 | 304 | 73.2 | 655,160 | 3877 |
150 | EW | Para | 0.030 | Para | 0.030 | Para | 0.010 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 82.6 | 78.0 | 95.6 | 61.6 | 305 | 73.2 | 656,748 | 3886 |
151 | EW | Para | 0.030 | Para | 0.030 | Para | 0.005 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 82.3 | 78.2 | 95.5 | 61.5 | 304 | 73.2 | 655,822 | 3881 |
152 | EW | Para | 0.035 | Para | 0.035 | Para | 0.010 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 82.4 | 77.5 | 96.2 | 61.4 | 304 | 73.2 | 651,657 | 3856 |
153 | EW | Para | 0.025 | Para | 0.025 | Para | 0.010 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 82.8 | 78.5 | 94.5 | 61.4 | 304 | 73.2 | 657,790 | 3892 |
154 | EW | Para | 0.020 | Para | 0.020 | Para | 0.010 | Avg | 5.38 | 220 | 1.5 | 1.500 | 15.55 | 83.0 | 79.0 | 93.1 | 61.0 | 302 | 73.2 | 655,320 | 3878 |
155 | EW | Para | 0.035 | Para | 0.025 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 79.8 | 78.3 | 93.5 | 58.4 | 313 | 79.3 | 669,998 | 3964 |
156 | EW | Para | 0.025 | Para | 0.035 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.7 | 78.4 | 94.2 | 59.6 | 320 | 79.3 | 685,375 | 4055 |
157 | EW | Para | 0.025 | Para | 0.040 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.8 | 78.2 | 94.5 | 59.7 | 320 | 79.3 | 684,140 | 4048 |
158 | EW | Para | 0.025 | Para | 0.045 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 80.8 | 77.9 | 94.7 | 59.6 | 320 | 79.3 | 681,201 | 4031 |
159 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.2 | 78.4 | 94.0 | 59.8 | 321 | 79.3 | 686,852 | 4064 |
160 | EW | Para | 0.015 | Para | 0.040 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.5 | 78.7 | 93.2 | 59.8 | 321 | 79.3 | 687,385 | 4067 |
161 | EW | Para | 0.040 | Para | 0.020 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 79.3 | 78.2 | 92.7 | 57.5 | 308 | 79.3 | 657,319 | 3889 |
162 | EW | Para | 0.025 | Para | 0.045 | Flat | 0 | n/a | 5.38 | 220 | 1.5 | 1.625 | 15.55 | 81.2 | 78.2 | 94.2 | 59.8 | 321 | 79.3 | 683,795 | 4046 |
163 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 15.55 | 80.9 | 81.3 | 97.6 | 64.2 | 344 | 79.3 | 755,567 | 4471 |
164 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 6.38 | 220 | 1.5 | 1.625 | 15.55 | 81.0 | 80.0 | 96.2 | 62.4 | 334 | 79.3 | 726,272 | 4297 |
165 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 8.38 | 220 | 1.5 | 1.625 | 15.55 | 80.8 | 82.4 | 98.4 | 65.5 | 351 | 79.3 | 777,231 | 4599 |
166 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 15.55 | 80.2 | 81.8 | 97.5 | 64.0 | 343 | 79.3 | 752,424 | 4452 |
167 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 8.38 | 220 | 1.5 | 1.625 | 15.55 | 80.1 | 82.9 | 98.4 | 65.3 | 350 | 79.3 | 776,482 | 4595 |
168 | EW | Para | 0.020 | Para | 0.040 | Para | 0.030 | Avg | 7.38 | 220 | 1.5 | 1.625 | 15.55 | 82.4 | 81.3 | 96.4 | 64.6 | 346 | 79.3 | 647,490 | 3831 |
169 | EW | Para | 0.020 | Para | 0.040 | Para | 0.025 | Avg | 7.38 | 220 | 1.5 | 1.625 | 15.55 | 82.3 | 81.5 | 96.4 | 64.6 | 347 | 79.3 | 768,198 | 4546 |
170 | EW | Para | 0.020 | Para | 0.040 | Para | 0.020 | Avg | 7.38 | 220 | 1.5 | 1.625 | 15.55 | 82.1 | 81.7 | 96.3 | 64.6 | 347 | 79.3 | 768,789 | 4549 |
171 | EW | Flat | 0 | Flat | 0 | Flat | 0 | Avg | 7.38 | 220 | 1.5 | 1.625 | 15.55 | 80.0 | 83.4 | 90.3 | 60.2 | 323 | 79.3 | 716,083 | 4237 |
172 | EW | Flat | 0 | Flat | 0 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 72.8 | 81.4 | 92.4 | 54.8 | 294 | 79.3 | 686,972 | 4065 |
173 | EW | Para | 0.020 | Para | 0.040 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 75.8 | 79.6 | 97.8 | 59.0 | 316 | 79.3 | 685,887 | 4059 |
174 | EW | Para | 0.020 | Para | 0.045 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 76.0 | 79.5 | 97.9 | 59.1 | 317 | 79.3 | 683,667 | 4045 |
175 | EW | Para | 0.020 | Para | 0.050 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 76.2 | 79.3 | 97.9 | 59.2 | 317 | 79.3 | 693,523 | 4104 |
176 | EW | Para | 0.015 | Para | 0.050 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 77.0 | 79.5 | 97.7 | 59.8 | 321 | 79.3 | 701,808 | 4153 |
177 | EW | Para | 0.010 | Para | 0.050 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 77.8 | 79.8 | 97.3 | 60.4 | 324 | 79.3 | 680,325 | 4026 |
178 | EW | Para | 0.020 | Para | 0.055 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 76.3 | 79.1 | 97.9 | 59.1 | 317 | 79.3 | 673,495 | 3985 |
179 | EW | Para | 0.025 | Para | 0.050 | Flat | 0 | n/a | 7.38 | 220 | 1.5 | 1.625 | 35.0 | 75.5 | 79.0 | 98.0 | 58.5 | 314 | 79.3 | 766,451 | 4535 |
References
- Ravi Kumar, K.; Krishna Chaitanya, N.V.V.; Kumar, N.S. Solar thermal energy technologies and its applications for process heating and power generation—A review. J. Clean. Prod. 2021, 282, 125296. [Google Scholar] [CrossRef]
- Nathan, G.J.; Lee, L.; Ingenhoven, P.; Tian, Z.; Sun, Z.; Chinnici, A.; Jafarian, M.; Ashman, P.; Potter, D.; Saw, W. Pathways to the use of concentrated solar heat for high temperature industrial processes. Sol. Compass 2023, 5, 100036. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.A.; Sleiti, A.K. Thermoeconomic analysis of solar-assisted industrial process heating system. Int. J. Energy Res. 2024, 2024, 4614066. [Google Scholar] [CrossRef]
- Henry, A.; Prasher, R.; Majumdar, A. Five thermal energy grand challenges for decarbonization. Nat. Energy 2020, 5, 635–637. [Google Scholar] [CrossRef]
- Thiel, G.P.; Stark, A.K. To decarbonize industry, we must decarbonize heat. Joule 2021, 5, 531–550. [Google Scholar] [CrossRef]
- Vasudevan, N.; Ramanathan, K.; Parvathy, R.S.; Ramesh, A.; Joshy, K.V. Landscape degradation: The August 2019 Puthumala landslide in Kerala, India. Recent Adv. Sustain. Environ. Lect. Notes Civ. Eng. 2023, 285, 1–11. [Google Scholar]
- Teke, A.; Timur, O. Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals. Renewable and Sustainable Energy Rev. 2014, 33, 224–235. [Google Scholar] [CrossRef]
- Wang, J.; Han, Z.; Guan, Z. Hybrid solar-assisted combined cooling, heating and power systems: A review. Renew. Sustain. Energy Rev. 2020, 113, 110256. [Google Scholar] [CrossRef]
- Cutting-Edge Technology to Combat Climate Change. Available online: https://synhelion.com/technology/solar-fuel-technology (accessed on 26 December 2024).
- Scheffler, W. Development of a Solar Crematorium. In Proceedings of the International Solar Cookers Conference 2006, Granada, Spain, 12–16 July 2006; Available online: http://www.solare-bruecke.org/infoartikel/Papers_%20from_SCI_Conference_2006/22_wolfgang_scheffler.pdf (accessed on 26 December 2024).
- Fisher, R.P.; Lewandowski, A.; Yacob, T.W.; Ward, B.J.; Hafford, L.M.; Mahoney, R.B.; Oversby, C.J.; Mejic, D.; Hauschulz, D.H.; Summers, R.S.; et al. Solar thermal processing to disinfect human waste. Sustainability 2021, 13, 4935. [Google Scholar] [CrossRef]
- CDC Infection Control. Guidelines for Environmental Infection Control in Health-Care Facilities, Laundry and Bedding (2003). Available online: https://www.cdc.gov/infection-control/hcp/environmental-control/laundry-bedding.html (accessed on 26 December 2024).
- High Temperature Solar Energy, a Report by Centre National De La Recherche Scientifique (CNRS), France and Engineering Experiment Station, Georgia Institute of Technology. Available online: http://www.gtri.gatech.edu/history/files/media/other-publications/High_Temp_Solar_Energy_Pamphlet.pdf (accessed on 10 March 2024).
- Pushing Forward: Synhelion Produces Syncrude at Plant DAWN. Available online: https://synhelion.com/news/pushing-forward-synhelion-produces-syncrude-at-plant-dawn (accessed on 26 December 2024).
- Ritter CPC 18 OEM. Available online: https://ritter-energie.de/en/cpc-oem-evacuated-tube-collectors/ (accessed on 28 December 2024).
- Freeman, J.; Mohankumar, U.; Achuthan, K. A remote triggered compound parabolic collector for thermal engineering studies. Int. J. Emerg. Technol. Learn. 2022, 17, 243–260. [Google Scholar] [CrossRef]
- Scheffler, W. Introduction to the Revolutionary Design of Scheffler Reflectors. In Proceedings of the 6th International Conference on Solar Cookers, Granada, Spain, 12–16 July 2006. [Google Scholar]
- Auroville Solar Bowl. Available online: https://auroville.org/page/solar-bowl (accessed on 10 March 2024).
- Guigan, G.; (City of Auroville, Puducherry, India). Personal communication, 2012.
- Sampath, S.; (VSM Solar Pvt. Ltd., Bengaluru, India). Personal communication, 2013.
- Shankar, B.; Sarithlal, M.K.; Vijayan, V.; Freeman, J.; Achuthan, K. Remote triggered sollar thermal energy parabolic trough laboratory: Effective implementation and future possibilities for virtual labs. In Proceedings of the International Conference on Control Applications 2013, Hyderabad, India, 28–30 August 2013; pp. 472–476. [Google Scholar]
- Naik, H.; Baredar, P.; Kumar, A. Medium temperature application of concentrated solar thermal technology: Indian perspective. Renew. Sustain. Energy Rev. 2017, 76, 369–378. [Google Scholar] [CrossRef]
- Kanyowa, T.; Nyakujara, G.V.; Ndala, E.; Das, S. Performance analysis of Scheffler dish type solar thermal cooking system cooking 6000 meals per day. Sol. Energy 2021, 218, 563–570. [Google Scholar] [CrossRef]
- Indora, S.; Kandpal, T.C. Solar energy for institutional cooking in India: Prospects and potential. Environ. Dev. Sustain. 2022, 22, 7153–7175. [Google Scholar] [CrossRef]
- Junare, S.S.; Zamre, S.V.; Aware, M.M. Scheffler Dish and Its Applications. In Proceedings of the International Conference on Emanations in Modern Engineering and Management 2017, Nagpur, India, 4–5 March 2017; Volume 5, pp. 1–9. [Google Scholar]
- Ragula, U.B.R.; Devanathan, S.; Mohan, R. Solar Based Lemon Grass Essential Oil Distillation for Sustainability and Livelihood in Tribal Community. In Proceeding of the IEEE Global Humanitarian Technology Conference, Seattle, WA, USA, 13–16 October 2016; pp. 738–744. [Google Scholar]
- Ghirardi, E.; Brumana, G.; Franchini, G.; Perdichizzi, A. Heliostat layout optimization for load-following solar tower plants. Renew. Energy 2021, 168, 393–405. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, A.; Kumar, A. Financial viability assessment of concentrated solar power technologies under Indian climatic conditions. Sustain. Energy Technol. Assess. 2021, 43, 100928. [Google Scholar] [CrossRef]
- Osuna, R.; Fernandez, V. PS10, a 10 MW solar tower power plant for southern Spain. Energy 2000, 2000, 386–393. [Google Scholar]
- Burgaleta, J.I.; Arias, S.; Ramirez, D. Gemasolar, the First Tower Thermosolar Commercial Plant with Molten Salt Storage. In Proceeding of the SolarPACES, Granada, Spain, 20–23 September 2011. [Google Scholar]
- Tharpe, J.; Anderson, K.R. Simulation and Lessons Learned from the Ivanpah Solar Plant Project. In Proceedings of the ASES National Solar Conference, Albuquerque, NM, USA, 21–24 June 2018. [Google Scholar]
- Gamil, A.; Li, P.; Khammash, A.L. Modeling and analysis of a relocatable solar power tower for pressurized water heating and storage providing low to medium temperature industrial process heat. Energy Convers. Manag. 2023, 296, 117698. [Google Scholar] [CrossRef]
- Lee, K.; Lee, I. Optimization of a heliostat field site in central receiver systems based on analysis of site slope effect. Sol. Energy 2019, 193, 175–183. [Google Scholar] [CrossRef]
- Noone, C.J.; Torrilhon, M.; Mitsos, A. Heliostat field optimization: A new computationally efficient model and biomimetic layout. Sol. Energy 2012, 86, 792–803. [Google Scholar] [CrossRef]
- Pitz-Paal, R.; Botero, N.B.; Steinfeld, A. Heliostat field layout optimization for high-temperature solar thermochemical processing. Sol. Energy 2011, 85, 334–343. [Google Scholar] [CrossRef]
- Lutchman, S.L.; Groenwold, A.A.; Gauche, P.; Bode, S. On Using a Gradient-Based Method for Heliostat Field Layout Optimization. In Proceeding of the SolarPACES in Energy Procedia, Las Vegas, NV, USA, 17–20 September 2013; Volume 49, pp. 1429–1438. [Google Scholar]
- Besarati, S.; Yogi Goswami, D. A computationally efficient method for the design of the heliostat field for solar power tower plant. Renew. Energy 2014, 69, 226–232. [Google Scholar] [CrossRef]
- Noone, C.J.; Ghobeity, A.; Slocum, A.; Tzamtzis, G.; Mitsos, A. Site selection for hillside central receiver solar thermal plants. Sol. Energy 2011, 85, 839–848. [Google Scholar] [CrossRef]
- Kiwan, S.; Al Hamad, S. Optimum optical performance of hillside solar central tower systems using spiral distribution. J. Solar Energy Eng. 2018, 141, 1–12. [Google Scholar]
- Buck, R.; Pfahl, A.; Roos, T.H. Target Aligned Heliostat Field Layout for Non-flat Terrain. In Proceedings of the First Southern African Solar Energy Conference (SASEC), Stellenbosch, South Africa, 21–23 May 2012. [Google Scholar]
- Kumar, V.; Jethani, J.K.; Bohra, L. Combating climate change through renewable sources of electricity—A review of rooftop solar projects in India. Sustain. Energy Technol. Assess. 2023, 60, 103526. [Google Scholar] [CrossRef]
- Zaibel, R.; Dagan, E.; Karni, J.; Ries, H. An astigmatic corrected target-aligned heliostat for high concentration. Sol. Energy Mater. Sol. Cells 1995, 37, 191–202. [Google Scholar] [CrossRef]
- Coventry, J.; Arjomandi, M.; Barry, J.; Blanco, M.; Burgess, G.; Campbell, J.; Connor, P.; Emes, M.; Fairman, P.; Farrant, D.; et al. Development of the ASTRI Heliostat. In Proceeding of the SolarPACES Conference, AIP Conference Proceeding, Cape Town, South Africa, 13–16 October 2015; Volume 1734. [Google Scholar]
- Pitch/Roll Heliostat Control System Design, Google RE<C Project. Available online: https://www.google.org/pdfs/google_heliostat_pitch_roll_control.pdf (accessed on 29 December 2014).
- Alejandro, M.; Gonzalo, I.; Romero, M.; Ganzalez-Anguilar, J. Drift analysis in Tilt-Roll heliostats. Sol. Energy 2020, 211, 1170–1183. [Google Scholar]
- Freeman, J.; Shankar, B.; Sundaram, G. Inverse Kinematics of a Dual Linear Actuator Pitch/Roll Heliostat. In Proceedings of the Solar Paces Conference, AIP Conference Proceedings, Dubai, United Arab Emirates, 11–14 October 2016; p. 030018. [Google Scholar]
- Freeman, J.; Kiranlal, E.U.; Dharmana, M.M. Novel ANFIS based control architecture for solar energy heliostats. J. Appl. Mech. Mater. 2014, 704, 395–400. [Google Scholar] [CrossRef]
- Coventry, J.; Pye, J. Heliostat cost reduction—where to now? Energy Procedia 2014, 49, 60–70. [Google Scholar] [CrossRef]
- Schramek, P.; Mills, D. Heliostats for Maximum Ground Coverage. In Proceeding of the SolarPACES Conference, Proceedings in Energy, Zurich, Switzerland, 4–6 September 2002; pp. 701–713. [Google Scholar]
- Belaid, A.; Gama, A.; Bezza, B.; Arrif, T.; Bouakba, M. Design optimization of a solar tower power plant heliostat field by considering different heliostat shapes. Int. J. Energy Res. 2020, 44, 11524–11541. [Google Scholar] [CrossRef]
- Grigoriev, V.; Milidonis, K.; Blanco, M. Sun tracking by heliostats with arbitrary orientation of primary and secondary axes. Sol. Energy 2020, 207, 1384–1389. [Google Scholar] [CrossRef]
- Kolb, G.J.; Jones, S.A.; Donnelly, M.W.; Gorman, D.; Thomas, R.; Davenport, R.; Lumia, R. Heliostat Cost Reduction Study, Sandia Report; Technical Report No. SAND2007–3293; Sandia National Laboratories: Albuquerque, NM, USA, 2007; p. 103. [Google Scholar]
- NREL/SolarPACES Concentrating Solar Power Projects. Available online: https://solarpaces.nrel.gov (accessed on 10 March 2024).
- Hoen, B.; Darlow, R.; Haac, R.; Rand, J.; Kalinski, K. Effects of land-based wind turbine upsizing on community sound levels and power and energy density. Appl. Energy 2023, 338, 120856. [Google Scholar] [CrossRef]
- Freeman, J.D.; Sabu, M.; Shankar, B.; Achuthan, K. Novel wireless performance monitoring for small wind turbines. In Proceedings of the 1st IEEE Conference on Technologies for Sustainability 2013, Portland, OR, USA, 1–2 August 2013; pp. 114–119. [Google Scholar]
- Schell, S. Design and evaluation of eSolar’s heliostat fields. Sol. Energy 2011, 85, 614–619. [Google Scholar] [CrossRef]
- MATLAB. Available online: https://www.mathworks.com/products/new_products/release2023b.html (accessed on 28 December 2024).
- OpticStudio. Available online: https://www.ansys.com/products/optics/ansys-zemax-opticstudio (accessed on 10 March 2024).
- Cruz, N.C.; Redondo, J.L.; Berenguel, M.; Álvarez, J.D.; Ortigosa, P.M. Review of software for optical analyzing and optimizing heliostat fields. Renew. Sustain. Energy Rev. 2017, 72, 1001–1018. [Google Scholar] [CrossRef]
- NREL SPA Algorithm in MATLAB. Available online: https://www.mathworks.com/matlabcentral/fileexchange/59903-nrel-s-solar-position-algorithm-spa (accessed on 28 December 2024).
- Himawari. Physical Solar Model; version 3 (PSM v3); United States National Renewable Energy Laboratory: Golden, CO, USA, 2021. Available online: https://developer.nrel.gov/docs/solar/nsrdb/himawari-download/ (accessed on 10 March 2024).
- Schmitz, M.; Schwarzbo, P.; Buck, R.; Pitz-Paal, R. Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators. Sol. Energy 2006, 80, 111–120. [Google Scholar] [CrossRef]
- National Renewable Energy Labs (NREL). SolarPilot User’s Manual, Available in the SolarPilot Software Tool; Golden, CO, USA, 2015. Available online: https://www2.nrel.gov/csp/solarpilot-download (accessed on 28 December 2024).
- Leary, P.L.; Hankins, J.D. Users Guide for MIRVAL: A Computer Code for Comparing Designs of Heliostat-Receiver Optics for Central Receiver Power Plants, Sandia Report; Technical Report No. SAND-77-8280; Sandia National Laboratories: Albuquerque, NM, USA, 1979. [Google Scholar]
- Mwesigye, A.; Bello-Ochende, T.; Meyer, J.P. Numerical Investigation of the Effect of Slope Errors and Specularity Errors on the Thermal Performance of a Solar Parabolic Trough Collector System. In Proceedings of the Third Southern African Solar Energy Conference, Skukuza, South Africa, 11–13 May 2015. [Google Scholar]
- Freeman, J.; Kiranlal, E.U.; Rajasree, S.R. Study of the Errors Influencing Heliostats for Calibration and Control System Design. In Proceedings of the IEEE International Conference on Recent Advances and Innovations in Engineering, Jaipur, India, 9–11 May 2014. [Google Scholar]
- Ortega, G.; Rovira, A. A new method for the selection of candidates for shading and blocking in central receiver systems. Renew. Energy 2020, 152, 961–973. [Google Scholar] [CrossRef]
- Ortega, G.; Barbero, R.; Rovira, A. Global methods for calculating shading and blocking efficiency in central receiver systems. Energies 2024, 17, 1282. [Google Scholar] [CrossRef]
- Rizvi, A.A.; Yang, D. A detailed account of calculation of shading and blocking factor of a heliostat field. Renew. Energy 2022, 181, 292–303. [Google Scholar] [CrossRef]
- Derbal, D.; Abderrezak, A.; Chehaidia, S.E.; Amin, M.T.; Mosaad, M.I.; Abdul-Fattah, T.A. Parametric study and optimization of no-blocking heliostat field layout. Energies 2023, 16, 4943. [Google Scholar] [CrossRef]
- Wagner, M.J.; Wendelin, T. SolarPILOT: A power tower solar field layout and characterization tool. Sol. Energy 2018, 171, 185–196. [Google Scholar] [CrossRef]
- Wendelin, T.; Dobos, A.; Lewandowski, A. SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems; Technical Report No. NREL/TP-5500–59163; National Renewable Energy Lab (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Blanco, M.J.; Mutuberria, A.; Garcia, P.; Gastesi, R.; Martin, V. Preliminary Validation of Tonatiah. In Proceedings of the SolarPACES, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Jafrancesco, D.; Cardoso, J.; Mutuberria, A.; Leonardi, E.; Les, I.; Sansoni, P.; Francini, F.; Fontani, D. Optical Simulation of a Central Receiver System: Comparison of different software tools. Renew. Sustain. Energy Rev. 2018, 94, 792–803. [Google Scholar] [CrossRef]
- Want, Y.; Potter, D.; Asselineau, C.-A.; Corsi, C.; Wagner, M.; Caliot, C.; Piaud, B.; Blanco, M.; Kim, J.-S.; Pye, J. Verification of optical modelling of sun shape and surface slope error for concentrating solar power systems. Sol. Energy 2020, 195, 461–474. [Google Scholar]
- System Advisor Model Version 2023.12.17 (SAM2023.12.17); National Renewable Energy Laboratory: Golden, CO, USA. Available online: https://sam.nrel.gov (accessed on 30 July 2024).
- Wagner, M.J.; Newman, A.M.; Hamilton, W.T.; Braun, R.J. Optimized dispatch in a first-principles concentrating solar power production model. Appl. Energy 2017, 203, 959–971. [Google Scholar] [CrossRef]
- Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions. Energy Convers. Manag. 2015, 101, 450–459. [Google Scholar] [CrossRef]
- Ramesh, M.V. Embrace of Compassion—2004 Indian Ocean Tsunami: Swift Transformation and Community Resilience; Amrita Vishwa Vidyapeetham: Kerala, India, 2023. [Google Scholar]
Industrial Process | Temperature (°C) |
---|---|
Auto industry (paint curing, others) | 40–100 |
Beverage | 60–110 |
CCHP (combined cooling, heating and power) | 80–230 [8] |
Cement manufacturing | 1500 [9] |
Cooking (rice) | 80–100 |
Crematorium | 800 [10] |
Dairy processing | 120 |
Desalination | 240–300 |
Sanitizing human waste | 55–210 [11] |
Enhanced oil recovery | 240–300 |
Glass manufacturing | 1500–1700 |
Laundry and sanitation | 70–80 [12] |
Leather processing | 40–100 |
Materials science research | Up to 3500 [13] |
Metal processing | 900–1200 |
Paper industry | 200 |
Pharmaceutical manufacturing | 55–120 |
Power generation | Greater than 400 |
Solar fuel | 1500 [14] |
Textile manufacturing | 40–120 |
Solar Thermal Technology | Temperature (°C) |
---|---|
Flat plate | 50–80 |
Evacuated-tube flat plate | 50–120 |
CPC (compound parabolic collector) flat plate | 100–250 [15,16] |
Fresnel | 100–300 |
Parabolic dish | 500–1200 |
Parabolic trough | 100–400 |
Power tower | 400–800 |
Scheffler dish (fixed receiver) | 500–1020 [17] |
Solar furnace | 400–3500 [13] |
Solar bowl | 500 [18,19] |
Parameter | Units | MATLAB + OpticStudio | SolarPILOT + SolTrace | Delta |
---|---|---|---|---|
Shadowing + Cosine Efficiency | % | 56.31 | 56.87 | −0.56 |
Blocking Efficiency | % | 76.14 | 75.91 | 0.24 |
Image Intercept Efficiency | % | 87.36 | 87.43 | −0.07 |
Solar Field Optical Efficiency | % | 38.91 | 39.22 | −0.31 |
Simulation Numbers (Rows) | Layout | North–South Shape | North–South Constant | East–West Shape | East–West Constant | Initial Heliostat Articulation | Receiver Height | Key Learnings |
---|---|---|---|---|---|---|---|---|
1–2 | 160 heliostats | Flat | - | Flat | - | North–South | Constant | The flat and linear shapes have consistently lower efficiencies than parabolic. |
3–9 | Parabolic | Range | ||||||
10–17 | Linear | |||||||
18–25 | Parabolic | Optimized | Range | |||||
26–38 | 194 heliostats | Parabolic | Range | Parabolic | Range | North–South | Constant | |
39–43 | Flat | - | East–West | |||||
44–48 | Flat | - | Parabolic | Range | ||||
49–54 | 220 heliostats | Flat | - | Flat | - | East–West | Range | Suggests that the optimum single-axis parabolic layout was with the axis along the North–South direction and East–West initial heliostat articulation. |
55–61 | Parabolic | Range | Constant | |||||
62–67 | Optimized | Range | ||||||
68–72 | Flat | - | Parabolic | Range | East–West | Constant | ||
73–78 | Optimized | Range | ||||||
79–83 | Flat | - | North–South | |||||
84–87 | Parabolic | Range | Flat | - | North–South | Constant | ||
88–94 | Flat | - | Parabolic | Range | ||||
95–100 | Optimized | Range | ||||||
101–105 | Parabolic | Optimized | - | - | East–West | |||
106–114 | 220-Max heliostats | Parabolic | Range | - | - | North–South | Constant | Confirmed the optimum single-axis parabolic layout to be along N-S direction with E-W initial heliostat articulation. |
115–119 | Flat | - | Parabolic | Range | ||||
120–127 | Parabolic | Range | Flat | - | East–West | |||
128–133 | Flat | - | Parabolic | Range | ||||
134–137 | Parabolic | Optimized | Parabolic | Optimized | Evaluates the “bowl” scenario w/both NS and EW parabolic shapes. Four methods of calculating heliostat height were checked: (1) min, (2) average, (3) weighted average, and (4) the max of the two possible values. | |||
138–151 | Range | |||||||
152–154 | Range | Optimized | ||||||
155–162 | Parabolic w/separate North and South halves | Flat | - | |||||
163–167 | Optimized | Range | ||||||
168–171 | Parabolic | Range | Constant | |||||
172–179 | Range | Flat | - | Evaluates higher latitudes. |
Heliostat Type | Number of Heliostats | Heliostat Layout–Receiver Height (m) | Shading Efficiency (%) | Cosine Efficiency (%) | Blocking Efficiency (%) | SCB Efficiency (%) | Effective SCB Area (m2) |
---|---|---|---|---|---|---|---|
Az-El | 105 | Radial stagger/no-blocking dense, flat—5.38 | 74.0 (combined) | 96.1 | 52.6 | 124 | |
Az-El | 113 | Radial stagger/no-blocking dense, hand optimized, flat—5.38 | 74.0 (combined) | 95.7 | 52.4 | 133 | |
Az-El | 137 | Max-pack Az-El, flat—5.38 | 70.0 (combined) | 86.4 | 42.3 | 131 | |
Tilt–Roll | 220 | NS initial rotation, flat—5.38 (Figure 17, Col. 4) | 77.6 | 81.1 | 87.1 | 54.8 | 271 |
Tilt–Roll | 220 | EW initial rotation, flat—5.38 (Appendix A, Row 50) | 81.9 | 81.1 | 85.4 | 56.7 | 281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freeman, J.; Sampath, W.; Achuthan, K. Tilt–Roll Heliostats and Non-Flat Heliostat Field Topographies for Compact, Energy-Dense Rooftop-Scale and Urban Central Receiver Solar Thermal Systems for Sustainable Industrial Process Heat. Energies 2025, 18, 426. https://doi.org/10.3390/en18020426
Freeman J, Sampath W, Achuthan K. Tilt–Roll Heliostats and Non-Flat Heliostat Field Topographies for Compact, Energy-Dense Rooftop-Scale and Urban Central Receiver Solar Thermal Systems for Sustainable Industrial Process Heat. Energies. 2025; 18(2):426. https://doi.org/10.3390/en18020426
Chicago/Turabian StyleFreeman, Joshua, Walajabad Sampath, and Krishnashree Achuthan. 2025. "Tilt–Roll Heliostats and Non-Flat Heliostat Field Topographies for Compact, Energy-Dense Rooftop-Scale and Urban Central Receiver Solar Thermal Systems for Sustainable Industrial Process Heat" Energies 18, no. 2: 426. https://doi.org/10.3390/en18020426
APA StyleFreeman, J., Sampath, W., & Achuthan, K. (2025). Tilt–Roll Heliostats and Non-Flat Heliostat Field Topographies for Compact, Energy-Dense Rooftop-Scale and Urban Central Receiver Solar Thermal Systems for Sustainable Industrial Process Heat. Energies, 18(2), 426. https://doi.org/10.3390/en18020426