Experimental Study of the Feasibility of Air Flooding in an Ultra-Low Permeability Reservoir
Abstract
:1. Introduction
2. Experimental Design
2.1. Low Temperature Oxidation Kinetics Experiment
2.2. Oil Displacement Experiment
2.2.1. Experimental Setup
2.2.2. Experimental Conditions
2.2.3. Experimental Procedures
- (1)
- The air permeability of the natural core is determined after oil extraction, washing, drying, packaging the core in plastic, connecting it with the core model, and connecting the back pressure controller to the outlet end of core. The porosity is determined after formation water saturation.
- (2)
- Formation water is prepared, the cores are saturated with water, and the water permeability calculated.
- (3)
- Oil is injected into the core which is saturated with water, creating oil flooding water, until there no water comes out of the core outlet, and the irreducible water saturation is calculated.
- (4)
- Water is injected into the core 15 for water flooding until no oil flows out. The amount of oil flooding by water, the amount of injection water needed for the flooding process, and the residual oil saturation, recovery efficiency and ultimate recovery can be calculated.
- (5)
- Core 15 should be oil saturated with irreducible water. Repeat step (3), to calculate the irreducible water saturation.
- (6)
- Inject water into core 15 for water flooding until the water cut of the outlet reaches 75%, which is the average water cut of the block. Adjust the gas pressure to the displacement pressure, inject air into the core for the oil displacement experiments until no oil flows out, calculating the amount of oil and injected air.
- (7)
- Repeat steps (1)~(4) to calculate the residual oil saturation, recovery efficiency and ultimate recovery with core 31.
- (8)
- Repeat steps (1)~(3), (6), measuring the oil and gas volume and injected gas volume and calculate the recovery efficiency with core 32.
3. Results and Discussion
3.1. Test Conclusions
3.2. The Experimental Results and Analysis
3.2.1. The First Set of Experiments
(a) Permeability to Water
(b) Water Flooding Recovery
(c) Oil Saturation Experiment Again
(d) Air Displacement after Water Flooding Experiments
(e) Analysis of the Results
3.2.2. The Second and the Third Groups of Experiments
(a) Water Flooding Recovery
(b) Switch to Air Displacement after Water Flooding Experiment
(c) Result Comparison
4. Conclusions
- (1)
- ARC verified by the experiment that in this block formation oil transformation can happen with low temperature air oxidation, the initial exothermic temperature of the experiment is 240 °C, and the maximum heating rate is 0.11 °C/min.
- (2)
- The core15 experiments may be a result of gas channeling, and increasing the injection volume, and increasing the sweep efficiency may be ways to improve this problem, and one could also try the injection foam in the actual production.
- (3)
- The recovery efficiency improved 2.58%, the injection-production pressure difference dropped 60% and the injection capability increased 60% in the experiment shifting to air flooding after water flooding to 75% moisture content, compared with only water flooding. In the aspect of EOR and injection capacity improvmenet, the air displacement feasibly solved the problem of injection difficulty in the N fault block of the L oilfield.
- (4)
- The paper provides experimental proof this can work, suggesting that other science and technology workers could now undertake further tests and verify this through numerical simulation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Greaves, M.; Ren, S.R.; Rathbone, R.R. Air Injection Technique (LTO Process) for IOR from Light Oil Reservoirs: Oxidation. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 19–22 April 1998; pp. 479–492.
- Wang, C.J.; Zheng, L.M.; Gao, R.M. Extra low permeability reservoir in Erdos shallow air flooding after water flooding experiment research. J. Pet. Geol. Eng. 2013, 27, 135–141. [Google Scholar]
- Greaves, M.; Ren, S.R.; Rathbone, R.R. Improve Residual Light Oil Recovery by Air Injection (LTO Process). J. Can. Pet. Technol. 2000, 39, 57–61. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Zhang, Y.T.; Liu, S.Q. Oil displacement mechanism of air injection of low permeability reservoir development. J. Pet. Explor. Dev. 2010, 37, 471–476. [Google Scholar]
- Faure, P.; Landais, P. Evidence for clay minerals catalytic effects during low temperature air oxidation of n-alkanes. J. Fue1 2000, 79, 1751–1756. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.Y.; Sun, L.T.; Li, S.L.; Liu, W.H. Research on the mechanisms of enhancing recovery of light-oil reservoir by air-injected low-temperature oxidation technique. Nat. Gas Ind. 2004, 24, 78–80. [Google Scholar]
- Sandra, R.; Nielsen, R.F. Tibetan Mining Dynamics; Petroleum Industry Press: Beijing, China, 1987; pp. 64–137. [Google Scholar]
- Dai, Z.; Middleton, R.; Viswanathan, H.; Fessenden-Rahn, J.; Bauman, J.; Pawar, R.; Lee, S.; McPherson, B. An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ. Sci. Technol. Lett. 2014, 1, 49–54. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; McPherson, B.; McPherson, B.; Will, R.A.; Lee, S.; Dai, Z.; Pan, F. Co-optimization of CO2-EOR and storage processes in mature oil reservoirs. Greenhouse Gas Sci. Technol. 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Dai, Z.; Viswanathan, H.; Middleton, R.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Xiao, T.; Lee, S.; McPherson, B.; et al. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites. Environ. Sci. Technol. 2016, 50, 7546–7554. [Google Scholar] [CrossRef] [PubMed]
- Giacchetta, G.; Leporini, M.; Marchetti, B. Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands. Appl. Energy 2014, 142, 1–9. [Google Scholar] [CrossRef]
- Crivellini, A.; Giacchetta, G.; Marchetti, B.; Marchetti, C.; Paciarotti, C.; Terenzi, A. Development and validation of a model for the simulation of the air drying phenomena in pipelines. Int. J. Math. Model. Numer. Optim. 2013, 4, 351–373. [Google Scholar] [CrossRef]
- Chen, Y.R.; Guo, P.; Zhang, J.D.; Xiong, J. Low permeability oil reservoir air injection low-temperature oxidation mechanism of crude oil. J. Chongqing Inst. Technol. 2013, 15, 101–103. [Google Scholar]
- Permain, P.; Gevelin, J.L. Air Injection into a Light Oil Reservoir: The Horse Creek Project. In Proceedings of Middle East Oil Show and Conference, Manama, Bahrain, 15–18 March 1997.
- Fu, Z.J. Bohai South, 36 Pieces of Air Displacement Indoor Experimental Research; China University of Petroleum: Beijing, China, 2008. [Google Scholar]
- Fraim, M.L.; Moffitt, P.D.; Yannimaras, D.V. Laborary Testing and Simulation Results for High Pressure Air Injection in a Waterflooded North Sea Oil Reservoir. Available online: http://cat.inist.fr/?aModele=afficheN&cpsidt=6244813 (accessed on 5 September 2016).
- Moore, R.G.; Ursenbach, M.G. Air injection for oil recovery. J. JCPT 2002, 9, 16–19. [Google Scholar]
- Gutierrez, D.; Miller, R.J.; Taylor, A.R.; Pete, T.; Vinodh, K. Buffalo Field High-Pressure Air Injection Projects 1977 to 2007: Technical Performance and Operational Challenges. SPE Reservoir Eval. Eng. 2009, 12, 542–550. [Google Scholar] [CrossRef]
- Gutierrez, D.; Miller, R.J.; Taylor, A.R.; Thies, P.; Kumar, V. The Challenge of Predicting The Field Performance of Air Injection Projects -based on Laboratory and Numerical Modeling. J. CPT 2009, 48, 53–56. [Google Scholar]
- Fasishi, M.B. Low temperature oxidation of visions crude oils. SPE Reservoir Eng. 1990, 5, 609–616. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, W.J.; Feng, L. Physical model visualization model of multi-layer sandstone reservoir water flooding experiment study. J. Southwest Pet. Univ. 2012, 34, 79–86. [Google Scholar]
- He, W.X.; Yang, Y.Q.; Ma, C.Y. Law of low permeability reservoir water flooding experiment research. J. Lithologic Reservoir 2010, 22, 109–111. [Google Scholar]
- Lv, W.F.; Leng, Z.P.; Zhang, Z.B. Application of CT scanning technology study of water flooding low permeability core mechanism. Geol. Oil Recover. Oil Gas 2013, 20, 87–90. [Google Scholar]
- Wan, C.L.; Wang, L. The upper limit value of combustible gas oxygen content security study. Chin. J. Safety Sci. 1999, 9, 48–52. [Google Scholar]
- Wang, R.F.; Sun, W. Low permeable sandstone microscopic model of water flooding experiment factors affecting oil displacement efficiency. Geol. Oil Exp. 2010, 32, 93–97. [Google Scholar]
- Gao, H.; Sun, W.; Lu, Y.; Tian, Y.H.; Ren, G.F. Experimental study on micro-flow channel characteristic of ultralow permeability sandstone reservoir: Taking Yanchang formation, Ordos Basin as example. Pet. Geol. Recover. Effic. 2011, 18, 58–62. [Google Scholar]
Core Sample | K/×10−3 μm2 | Φ/% | L/cm | d/cm |
---|---|---|---|---|
15 | 0.7399 | 12.63 | 6.54 | 2.36 |
31 | 0.3279 | 10.00 | 7.09 | 2.36 |
32 | 0.2297 | 10.00 | 6.08 | 2.36 |
Ion | Salinity |
---|---|
Na+ + K+ | 1493.85 |
Ca2+ | 10.02 |
Mg2+ | 6.08 |
Cl− | 274.80 |
SO42− | 81.65 |
HCO3− | 3051.00 |
CO32− | 195.00 |
Total Salinity | 5112.42 |
Parameter | ||||||
μw/mPa·s | Ka/×10−3 μm2 | φ/% | T/°C | γd/g/cm3 | μo/μw * | Kw/×10−3 μm2 |
0.65 | 0.74 | 12.63 | 78 | 0.993 | 4.23 | 0.56 |
Parameter | ||||||
γW/g/cm3 | μd/mPa·s | L/cm | k/% | Swi/% | D/cm | Sor |
0.99 | 0.67 | 6.54 | 36.3 | 42.77 | 2.36 | 0.0807 |
Parameter | ||||||
η/% | V/cm3 | vw/mL·min−1 | Qo/mL | μo/mPa·s | A/cm2 | pw0/MPa |
56.52 | 3.61 | 0.20 | 2.07 | 2.75 | 4.372136 | 4.018 |
ta/min | v/mL·min−1 | Q/mL | p/MPa | Injection Multiples/PV | K/×10−3 μm2 |
---|---|---|---|---|---|
0 | 0.5 | 0 | 0 | 0 | |
60 | 0.5 | 12.00 | 1.388 | 3.32 | 0.602 |
30 | 0.5 | 18.00 | 1.394 | 4.99 | 0.599 |
30 | 0.5 | 24.00 | 1.453 | 6.65 | 0.575 |
20 | 0.5 | 28.00 | 1.464 | 7.76 | 0.570 |
20 | 0.5 | 32.00 | 1.475 | 8.86 | 0.566 |
20 | 0.5 | 36.00 | 1.486 | 9.97 | 0.562 |
ta/min | v/mL·min−1 | Q/mL | Qw/mL | p/MPa | Injection Volume/PV | K/×10−3 μm2 | Remarks |
---|---|---|---|---|---|---|---|
0 | 0.1 | 0 | 0 | 0 | 0 | 0 | |
75 | 0.1 | 15.00 | 1.62 | 1.631 | 4.16 | 0.420 | Oil breakthrough |
30 | 0.2 | 21.00 | 1.87 | 1.719 | 5.82 | 0.399 | |
30 | 0.4 | 27.00 | 1.97 | 3.348 | 7.48 | 0.410 | |
30 | 0.8 | 33.00 | 2.07 | 4.969 | 9.14 | 0.552 | |
30 | 1.2 | 39.00 | 2.07 | 8.484 | 10.80 | 0.646 |
ta/min | v/mL·min−1 | Q/mL | Qo/mL | p/MPa | Injection Multiples/PV | Recovery/% | Remarks |
---|---|---|---|---|---|---|---|
0 | 0.2 | 0 | 0 | 0 | 0 | ||
5 | 0.2 | 1.00 | 0.55 | 2.476 | 0.28 | 26.57 | |
3 | 0.2 | 1.60 | 0.75 | 2.784 | 0.44 | 36.23 | Water breakthrough (water-free recovery 36.23%) |
7 | 0.2 | 3.00 | 0.95 | 3.092 | 0.83 | 45.89 | |
10 | 0.2 | 5.00 | 1.00 | 3.555 | 1.39 | 48.31 | |
10 | 0.2 | 7.00 | 1.00 | 3.714 | 1.94 | 48.31 | |
20 | 0.2 | 11.00 | 1.05 | 3.747 | 3.05 | 50.72 | |
30 | 0.2 | 17.00 | 1.07 | 3.806 | 4.71 | 51.69 | |
30 | 0.2 | 23.00 | 1.10 | 3.855 | 6.37 | 53.14 | |
30 | 0.2 | 29.00 | 1.10 | 3.798 | 8.03 | 53.14 | |
30 | 0.2 | 35.00 | 1.12 | 3.850 | 9.70 | 54.11 | |
30 | 0.2 | 41.00 | 1.12 | 3.828 | 11.36 | 54.11 | |
30 | 0.2 | 47.00 | 1.15 | 3.844 | 13.02 | 55.56 | |
30 | 0.2 | 53.00 | 1.15 | 3.826 | 14.68 | 55.56 | |
60 | 0.2 | 65.00 | 1.15 | 3.793 | 18.01 | 55.56 | |
60 | 0.2 | 77.00 | 1.15 | 3.905 | 21.33 | 55.56 | |
60 | 0.2 | 89.00 | 1.17 | 4.020 | 24.65 | 56.52 | |
60 | 0.2 | 101.00 | 1.17 | 3.947 | 27.98 | 56.52 | |
60 | 0.2 | 113.00 | 1.17 | 4.018 | 31.30 | 56.52 |
ta/min | v/mL·min−1 | Q/mL | Qw/mL | p/MPa | Injection Multiples/PV | K/×10−3 μm2 | Remarks |
---|---|---|---|---|---|---|---|
0 | 0.1 | 0 | 0 | 0 | 0 | 0 | |
215 | 0.1 | 43.00 | 0.47 | 2.620 | 11.91 | 0.262 | Oil breakthrough |
30 | 0.2 | 49.00 | 0.57 | 3.659 | 13.57 | 0.375 | |
30 | 0.4 | 55.00 | 0.67 | 5.487 | 15.24 | 0.500 | |
30 | 0.8 | 61.00 | 0.77 | 7.288 | 16.90 | 0.753 | |
30 | 0.4 | 67.00 | 0.77 | 7.000 | 18.56 | 0.392 | |
30 | 0.20 | 73.00 | 0.77 | 6.500 | 20.22 | 0.211 | |
30 | 0.10 | 79.00 | 0.77 | 3.587 | 21.88 | 0.191 | |
30 | 0.10 | 85.00 | 0.77 | 3.405 | 23.55 | 0.201 | |
30 | 0.10 | 91.00 | 0.77 | 3.609 | 25.21 | 0.190 | |
60 | 0.10 | 103.00 | 0.77 | 3.688 | 28.53 | 0.186 | |
120 | 0.05 | 127.00 | 0.77 | 3.968 | 35.18 | 0.086 | |
120 | 0.05 | 151.00 | 0.77 | 4.233 | 41.83 | 0.081 | |
120 | 0.05 | 175.00 | 0.77 | 4.564 | 48.48 | 0.075 | |
120 | 0.05 | 199.00 | 0.77 | 4.607 | 55.12 | 0.074 | |
120 | 0.05 | 223.00 | 0.87 | 4.134 | 61.77 | 0.083 |
ta/min | V/mL·min−1 | Q/mL | Qo/mL | p/MPa | Injection Multiples/PV | Recovery/% | Qa/m3·MPa−1 | Oxygen Content/% | Remarks |
---|---|---|---|---|---|---|---|---|---|
0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
10 | 0.2 | 1.0 | 0.25 | 4.12 | 0.50 | 20.03 | 0.21 | - | |
10 | 0.2 | 2.0 | 0.62 | 5.33 | 0.55 | 35.03 | 0.38 | - | Water breakthrough |
4 | 0.2 | 2.8 | 0.79 | 5.84 | 0.78 | 45.03 | 0.48 | - | |
2 | 0.2 | 3.2 | 0.83 | 5.83 | 0.89 | 46.76 | 0.55 | - | |
2 | 0.2 | 3.6 | 0.85 | 5.84 | 1.00 | 48.01 | 0.62 | - | |
1 | 0.2 | 3.8 | 0.92 | 4.25 | 1.05 | 51.98 | 0.89 | - | |
5 | 0.2 | 4.8 | 0.95 | 4.27 | 1.33 | 53.67 | 1.12 | - | |
7 | 0.2 | 6.2 | 0.95 | 3.20 | 1.72 | 53.67 | 1.94 | 19.6 | Gas breakthrough |
9 | 0.2 | 8 | 0.97 | 2.90 | 2.22 | 54.80 | 2.76 | 17.6 | |
10 | 0.2 | 10 | 0.97 | 2.50 | 2.77 | 54.80 | 4.00 | 16.7 | |
15 | 0.2 | 13 | 0.97 | 2.50 | 3.60 | 54.80 | 5.20 | 12.1 | |
20 | 0.2 | 17 | 0.97 | 2.50 | 4.71 | 54.80 | 6.80 | 10.2 | |
25 | 0.2 | 22 | 0.97 | 2.50 | 6.09 | 54.80 | 8.80 | 10.2 | |
30 | 0.2 | 28 | 0.97 | 2.50 | 7.76 | 54.80 | 11.20 | 9.9 | |
35 | 0.2 | 35 | 0.97 | 2.50 | 9.70 | 54.80 | 14.00 | 7.5 |
Parameters | Ka /×10−3 μm2 | T/°C | μo/μw * | φ/% | γd/g·cm–3 | Kw/×10−3 μm2 | L/cm |
Value | 3.1825 | 78 | 4.23 | 14.31 | 0.993 | 2.95 | 7.09 |
Parameters | μd/mPa·s | k/% | D/cm | V/cm3 | Swi/% | Sor | vw/mL·min−1 |
Value | 0.67 | 37.2 | 2.36 | 4.44 | 40.09 | 0.255 | 0.20 |
Parameters | A/cm2 | μo/mPa·s | Q0/mL | pWO/MPa | μw/mPa·s | γW/g·cm–3 | η/% |
Value | 4.372 | 2.75 | 2.66 | 3.853 | 0.65 | 0.99 | 57.51 |
ta/min | v/mL·min−1 | Q/mL | Qw/mL | p/MPa | Injection Multiples/PV | K/×10−3 μm2 | Remarks |
---|---|---|---|---|---|---|---|
0 | 0.10 | 0 | 0 | 0 | 0 | 0 | |
70 | 0.20 | 14 | 1.03 | 0.89 | 3.15 | 1.67 | |
50 | 0.50 | 24 | 1.65 | 1.53 | 5.41 | 2.43 | Oil found |
30 | 1.20 | 30 | 2.06 | 2.92 | 6.76 | 3.06 | |
30 | 1.80 | 36 | 2.35 | 4.58 | 8.11 | 2.92 | |
30 | 3.15 | 42 | 2.66 | 7.36 | 9.46 | 3.18 |
ta /min | v/mL·min−1 | Q/mL | Qo/mL | p/MPa | Injection Multiples/PV | Recovery/% | Qa/m3·MPa−1 | Remarks |
---|---|---|---|---|---|---|---|---|
0 | 0.20 | 0 | 0 | 0 | 0 | 0 | 0 | |
5 | 0.2 | 1.00 | 0.68 | 1.53 | 0.23 | 25.56 | 0.65 | |
5 | 0.2 | 2.00 | 0.99 | 2.68 | 0.45 | 37.22 | 0.75 | Water breakthrough |
7 | 0.2 | 3.40 | 1.00 | 2.89 | 0.77 | 37.59 | 1.18 | |
10 | 0.2 | 5.40 | 1.00 | 3.33 | 1.22 | 37.59 | 1.62 | |
15 | 0.2 | 8.40 | 1.00 | 3.56 | 1.89 | 37.59 | 2.36 | |
20 | 0.2 | 12.40 | 1.05 | 3.68 | 2.79 | 39.47 | 3.37 | |
30 | 0.2 | 18.40 | 1.05 | 3.78 | 4.14 | 39.47 | 4.87 | |
3 | 0.2 | 24.40 | 1.10 | 3.78 | 5.50 | 41.35 | 6.46 | |
30 | 0.2 | 30.40 | 1.10 | 3.78 | 6.85 | 41.35 | 8.04 | |
30 | 0.2 | 36.40 | 1.11 | 3.85 | 8.20 | 41.73 | 9.45 | |
30 | 0.2 | 42.40 | 1.27 | 3.83 | 9.55 | 47.74 | 11.08 | |
30 | 0.2 | 48.40 | 1.27 | 3.84 | 10.90 | 47.74 | 12.59 | |
30 | 0.2 | 54.40 | 1.30 | 4.11 | 12.25 | 48.87 | 13.24 | |
60 | 0.2 | 66.40 | 1.36 | 4.61 | 14.95 | 51.13 | 14.40 | |
60 | 0.2 | 78.40 | 1.48 | 4.45 | 17.66 | 55.64 | 17.62 | |
60 | 0.2 | 90.40 | 1.50 | 4.89 | 20.36 | 56.39 | 18.49 | |
60 | 0.2 | 102.4 | 1.53 | 5.03 | 23.06 | 57.52 | 20.36 | |
60 | 0.2 | 114.4 | 1.53 | 5.12 | 25.77 | 57.52 | 22.34 |
Parameters | ||||||
Ka/×10−3 μm2 | φ/% | T/℃ | γd/g/cm3 | μo/μw | Kw/×10−3 μm2 | L/cm |
3.2297 | 14.21 | 78 | 0.993 | 4.23 | 2.83 | 6.08 |
Parameters | ||||||
μd/mPa·s | D/cm | Swi/% | k/% | Sor | V/cm3 | vw/mL·min−1 |
0.67 | 2.36 | 39.78 | 36.4 | 0.241 | 3.78 | 0.20 |
Parameters | ||||||
A/cm2 | μo/mPa·s | Q0/mL | pWO/MPa | μw/mPa·s | γW/g/cm3 | η/% |
4.372 | 2.75 | 2.28 | 2.211 | 0.65 | 0.99 | 60.09 |
ta/min | v/mL·min−1 | Q/mL | Qw/mL | p/MPa | Injection Multiples/PV | K/×10−3 μm2 | Remarks |
---|---|---|---|---|---|---|---|
0 | 0.1 | 0 | 0 | 0 | 0 | 0 | |
50 | 0.2 | 10 | 1.03 | 0.99 | 2.65 | 1.29 | |
70 | 0.2 | 24 | 1.11 | 1.2 | 6.35 | 1.06 | |
50 | 0.3 | 34 | 1.37 | 1.47 | 8.99 | 1.30 | |
50 | 0.4 | 44 | 1.54 | 1.56 | 11.64 | 1.64 | Oil breakthrough |
30 | 0.4 | 50 | 1.66 | 2.78 | 13.23 | 0.92 | |
30 | 0.5 | 56 | 1.87 | 2.86 | 14.81 | 1.11 | |
30 | 0.5 | 62 | 1.95 | 2.87 | 16.40 | 1.11 | |
60 | 1 | 74 | 2.01 | 2.92 | 19.58 | 2.18 | |
60 | 1.6 | 86 | 2.01 | 7.36 | 22.75 | 1.39 | |
60 | 1.8 | 98 | 2.28 | 7.25 | 25.93 | 1.58 | |
120 | 3.2 | 122 | 2.28 | 8.64 | 32.28 | 2.36 |
ta/min | V/mL·min−1 | Q/mL | Qo/mL | P/MPa | Injection Multiples/PV | Recovery/% | Qa/m3·MPa−1 | Oxygen Content/% | Remarks |
---|---|---|---|---|---|---|---|---|---|
0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
5 | 0.2 | 1.00 | 0.62 | 5.36 | 0.26 | 27.19 | 0.19 | - | |
10 | 0.2 | 3.00 | 0.83 | 5.84 | 0.79 | 36.40 | 0.51 | - | Water breakthrough |
5 | 0.2 | 4.00 | 1.04 | 5.90 | 1.06 | 45.47 | 0.68 | - | |
2 | 0.2 | 4.40 | 1.12 | 5.96 | 1.16 | 49.20 | 0.74 | - | |
2 | 0.2 | 4.80 | 1.13 | 6.21 | 1.27 | 49.65 | 0.77 | - | |
2 | 0.2 | 5.20 | 1.14 | 6.35 | 1.38 | 50.10 | 0.82 | - | |
1 | 0.2 | 5.40 | 1.15 | 6.40 | 1.43 | 50.44 | 0.84 | - | |
2 | 0.2 | 5.80 | 1.19 | 5.89 | 1.53 | 52.19 | 0.98 | - | |
5 | 0.2 | 6.80 | 1.23 | 3.14 | 1.80 | 53.95 | 2.17 | 10.8 | Gas breakthrough |
5 | 0.2 | 7.80 | 1.27 | 3.02 | 2.06 | 55.70 | 2.58 | 8.7 | |
10 | 0.2 | 9.80 | 1.27 | 3.02 | 2.59 | 55.70 | 3.25 | 7.1 | |
10 | 0.2 | 11.80 | 1.34 | 2.50 | 3.12 | 58.77 | 4.72 | 7.0 | |
10 | 0.2 | 13.80 | 1.34 | 2.50 | 3.65 | 58.77 | 5.52 | 5.6 | |
20 | 0.2 | 17.80 | 1.37 | 2.50 | 4.71 | 60.09 | 7.12 | 4.6 | |
30 | 0.2 | 23.80 | 1.37 | 2.50 | 6.30 | 60.09 | 9.52 | 4.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, G.; Meng, Y.; Shen, A.; Guo, Y.; Liu, Y.; Tao, Y. Experimental Study of the Feasibility of Air Flooding in an Ultra-Low Permeability Reservoir. Energies 2016, 9, 783. https://doi.org/10.3390/en9100783
Qu G, Meng Y, Shen A, Guo Y, Liu Y, Tao Y. Experimental Study of the Feasibility of Air Flooding in an Ultra-Low Permeability Reservoir. Energies. 2016; 9(10):783. https://doi.org/10.3390/en9100783
Chicago/Turabian StyleQu, Guohui, Yuanlin Meng, Anqi Shen, Yuxin Guo, Yikun Liu, and Yonghang Tao. 2016. "Experimental Study of the Feasibility of Air Flooding in an Ultra-Low Permeability Reservoir" Energies 9, no. 10: 783. https://doi.org/10.3390/en9100783
APA StyleQu, G., Meng, Y., Shen, A., Guo, Y., Liu, Y., & Tao, Y. (2016). Experimental Study of the Feasibility of Air Flooding in an Ultra-Low Permeability Reservoir. Energies, 9(10), 783. https://doi.org/10.3390/en9100783