Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review
Abstract
:1. Introduction
2. Single Source Heat Pump AC Systems
2.1. Alternative Refrigerants
2.2. Application of Inverter Technology
2.3. Novel Components
2.4. Innovative System Structure
3. Multiple Source Heat Pump AC Systems
3.1. Additional Waste Heat Source
3.2. Supplemental External Heat Source
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Mei, V.C.; Chen, F.C.; Mathiprakasam, B.; Heenan, P. Study of solar-assisted thermoelectric technology for automobile air conditioning. J. Sol. Energy 1993, 115, 200–205. [Google Scholar] [CrossRef]
- Ma, G.Y. Study on thermoelectric air conditioning for electric vehicles. Refrig. Air Cond. 1998, 14, 5–10. [Google Scholar]
- Cao, Z.Y. Solution to air conditioning on EVs. Auto Electric. Parts 2008, 47, 1–4. [Google Scholar]
- Zhang, J.Z. Structural features of fully electric air conditioning system. Automob. Maint. 2006, 12, 4–5. [Google Scholar]
- Guyonvarch, G.; Aloup, C.; Petitjean, C. Savasse ADMD. 42V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles; SAE Technical Paper No. 2001-01-2500; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Randall, B. Blowing Hot and Cold. Available online: https://www.teslamotors.com/blog/blowing-hot-and-cold (accessed on 20 December 2006).
- Torregrosa, B.; Payá, J.; Corberán, J.M. Modeling of mobile air conditioning systems for electric vehicles. In Proceedings of the 4th European Workshop—Mobile Air Conditioning and Vehicle Thermal Systems, Torino, Italy, 1–2 December 2011.
- Lee, D. Experimental study on the heat pump system using R134a refrigerant for zero-emission vehicles. Int. J. Automot. Technol. 2015, 16, 923–928. [Google Scholar] [CrossRef]
- Qi, Z.G. Advances on air conditioning and heat pump system in electric vehicles—A review. Renew. Sustain. Energy Rev. 2014, 38, 754–764. [Google Scholar] [CrossRef]
- Shi, B.X.; Ma, G.Y.; Chen, G.S. Research on heat pump systems for electric vehicle air conditioning. Fluid Mach. 2002, 30, 48–50. [Google Scholar]
- Billiard, F. Refrigeration and air conditioning: What’s new at regulatory level. In Proceedings of the Ninth European Conference on Technological Innovations in Refrigeration, Air Conditioning and in the Food Industry, Milano, Italy, 29–30 June 2001.
- European Parliament (EUROPA). Regulation (EC) No. 842/2006 of the European Parliament and of the Council of 17 May 2006 on certain fluorinated greenhouse gases. Off. J. Eur. Union 2006, L161, 1–11. [Google Scholar]
- European Parliament (EUROPA). Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending council directive 70/156/EEC. Off. J. Eur. Union 2006, L161, 12–18. [Google Scholar]
- Pettersen, J.; Lorentzen, G. A New, Efficient and Environmentally Benign System for Automobile Air Conditioning; SAE Technical Paper No. 931129; SAE International: Warrendale, PA, USA, 1993. [Google Scholar]
- McEnaney, R.; Hrnjak, P. Clutch Cycling Mode of Compressor Capacity Control of Transcritical R744 Systems Compared to R134a Systems; SAE Technical Paper No. 2005-01-2033; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Petersen, M.; Bowers, C.; Elbel, S.; Hrnjak, P. Development of high-efficiency carbon dioxide commercial heat pump water heater. HVAC R Res. 2013, 19, 823–835. [Google Scholar]
- Hafner, A. Experimental Study on Heat Pump Operation of Prototype CO2 Mobile Air Conditioning System. In Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids; International Institute of Refrigeration (IRR): Paris, France, 2000. [Google Scholar]
- Hafner, A.; Pettersen, J.; Skaugen, G.; Nekså, P. An Automobile HVAC System with CO2 as the Refrigerant. IIR. In Proceedings of the Gustav Lorentzen Conference Natural Working Fluids; International Institute of Refrigeration (IRR): Paris, France, 1998. [Google Scholar]
- Hafner, A.; Jakobsen, A.; Nekså, P.; Pettersen, J. Life Cycle Climate Performance (LCCP) of Mobile Air-conditioning Systems. In Proceedings of the Verband der Automobilindustrie (VDA) Alternate Refrigerant Wintermeeting, Saafelden, Austria, 18–19 February 2004.
- Tamura, T.; Yakumaru, Y.; Nishiwaki, F. Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. Int. J. Refrig. 2005, 28, 1302–1307. [Google Scholar] [CrossRef]
- Kim, S.C.; Won, J.P.; Kim, M.S. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles. Appl. Therm. Eng. 2009, 29, 2408–2416. [Google Scholar] [CrossRef]
- Kim, M.H.; Pettersen, J.; Bullard, C.W. Fundamental process and system design issues in CO2 vapor compression systems. Prog. Energy Combust. 2004, 30, 119–174. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, M.S.; Hwang, I.C.; Lim, T.W. Performance evaluation of a CO2 heat pump system for fuel cell vehicles considering the heat exchanger arrangements. Int. J. Refrig. 2007, 30, 1195–1206. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, H.S.; Won, H.P. Characteristic evaluation on the cooling performance of an electrical air conditioning system using R744 for a fuel cell electric vehicle. Energies 2012, 5, 1371–1383. [Google Scholar] [CrossRef]
- Ma, Y.T.; Liu, Z.Y.; Tian, H. A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 2013, 55, 156–172. [Google Scholar] [CrossRef]
- Zou, Y.; Hrnjak, P. Effects of fluid properties on two-phase flow and refrigerant distribution in the vertical header of a reversible microchannel heat exchanger-Comparing R245fa, R134a, R410A and R32. Appl. Therm. Eng. 2014, 70, 966–976. [Google Scholar] [CrossRef]
- Wongwises, S.; Kamboon, A.; Orachon, B. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system. Energy Convers. Manag. 2006, 47, 1644–1559. [Google Scholar] [CrossRef]
- Hoffmann, G.; Plehn, W. Natural Refrigerants for Mobile Air-Conditioning in Passenger Cars; German Federal Environment Agency Press Office: Dessau, Germany, 2010; pp. 1–10. [Google Scholar]
- Chamoun, M.; Rulliere, R.; Haberschill, P.; Berail, J.F. Dynamic model of an industrial heat pump using water as refrigerant. Int. J. Refrig. 2012, 35, 1080–1091. [Google Scholar] [CrossRef]
- Zhao, Y. Study on the Performance of Automotive Air Conditioning Systems with R1234yf. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2012. [Google Scholar]
- Lee, Y.H.; Jung, D.S. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Appl. Therm. Eng. 2012, 35, 240–242. [Google Scholar] [CrossRef]
- Seybold, L.; Hill, W.; Zimmer, C. Internal Heat Exchanger Design Performance Criteria for R134a and HFO-1234yf; SAE Technical Paper No. 2010-01-1210; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Qi, Z.G. Experimental study on evaporator performance in mobile air conditioning system using HFO-1234yf as working fluid. Appl. Therm. Eng. 2013, 53, 124–130. [Google Scholar] [CrossRef]
- Ghodbane, M. An Investigation of R152a and Hydrocarbon Refrigerants in Mobile Air Conditioning; SAE Technical Paper No. 1999-01-0874; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Ghodbane, M.; Baker, J.A.; Kadle, P.S. Potential Applications of R-152a Refrigerant in Vehicle Climate Control Part II; SAE Technical Paper No. 2004-01-0918; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Hosoz, M.; Direk, M. Performance evaluation of an integrated automotive air conditioning and heat pump system. Energy Convers. Manag. 2006, 47, 545–559. [Google Scholar] [CrossRef]
- Saiz Jabardo, J.M.; Gonzales Mamani, W.; Ianella, M.R. Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor. Int. J. Refrig. 2002, 25, 1157–1172. [Google Scholar] [CrossRef]
- Shao, S.Q.; Shi, W.X.; Li, X.T.; Yan, Q.S. Study on the adjusting performance of variable frequency air conditioning system. Refrig. Air Cond. 2001, 1, 17–20. [Google Scholar]
- Lee, J.; Byun, J.S. Experiment on the performance improvement of air-to-air heat pump adopting the hot gas bypass method by outdoor fan speed variation. J. Mech. Sci. Technol. 2009, 23, 3407–3415. [Google Scholar] [CrossRef]
- Peng, Q.H.; Du, Q.G. Performance evaluation of a variable frequency heat pump air conditioning system for electric bus. IJFMS 2015, 8, 13–22. [Google Scholar] [CrossRef]
- Yeh, T.J.; Chen, Y.J.; Hwang, W.Y.; Lin, J.L. Incorporating fan control into air-conditioning systems to improve energy efficiency and transient response. Appl. Therm. Eng. 2009, 29, 1955–1964. [Google Scholar] [CrossRef]
- Shi, W.X.; Shi, B.H.; Yan, Q.S. Three control algorithms for air conditioners with frequency control. Heat Vent. Air Cond. 2000, 30, 16–19. [Google Scholar]
- Li, N.; Xia, L.; Deng, S.M.; Xu, X.G.; Chan, M.Y. Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network. Appl. Energy 2012, 91, 290–300. [Google Scholar] [CrossRef]
- Zhang, J.Z. Structure characteristics of electric air-conditioning system in Prius car. Automob. Maint. 2006, 8, 4–5. [Google Scholar]
- Li, S. BYD: Active research on air-conditioning system for green car. Refrig. Air Cond. 2015, 15, 85–86. [Google Scholar]
- Li, X.H. Development and application of frequency conversion air conditioner with electric heat pump for electric bus. Bus Technol. Res. 2009, 31, 23–25. [Google Scholar]
- Suzuki, T.; Ishii, K. Air Conditioning System for Electric Vehicle; SAE Technical Paper No. 960688; SAE International: Warrendale, PA, USA, 1996. [Google Scholar]
- Makino, M.; Ogawa, N.; Abe, Y.; Fujiwara, Y. Automotive Air-Conditioning Electrically Driven Compressor; SAE Technical Paper No. 2003-01-0734; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Naidu, M.; Nehl, T.W.; Gopalakrishnan, S.; Wurth, L. Electric Compressor Drive with Integrated Electronics for 42 V Automotive HVAC Systems; SAE Technical Paper No. 2005-01-1318; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Hwang, K.Y.; Park, G.B.; Cho, H.S. Design of IPMSM for the Electrical Compressor in EV; SAE Technical Paper No. 2011-28-0063; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Baumgart, R.; Aurich, J.; Ackermann, J.; Danzer, C. Comparison and Evaluation of a New Innovative Drive Concept for the Air Conditioning Compressor of Electric Vehicles; SAE Technical Paper No. 2015-26-0045; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Wei, M.S.; Huang, H.S.; Song, P.P.; Peng, S.Z.; Wang, Z.X.; Zhang, H. Experimental investigations of different compressors based electric vehicle heat pump air-conditioning systems in low temperature environment. In Proceedings of the IEEE Transportation Electrification Conference and Expo, ITEC Asia-Pacific, Beijing, China, 31 August–3 September 2014.
- Chen, G.S.; Shi, B.X.; Ma, G.Y. The simulating test of vane compressor with double working cavity. J. Guangdong Univ. Technol. 2000, 17, 11–14. [Google Scholar]
- Krahenbuhl, D.; Zwyssig, C.; Weser, H.; Kolar, J.W. A miniature 500000-r/min electrically driven turbo compressor. IEEE Trans. Ind. Appl. 2010, 46, 2459–2466. [Google Scholar] [CrossRef]
- Sakai, T.; Ueda, M. 2-Way Driven Compressor for Hybrid Vehicle Climate Control System; SAE Technical Paper No. 2004-01-0906; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Cummings, R.W.; Shah, R.K. Experimental Performance Evaluation of Automotive Air-Conditioning Heat Exchangers as Components and in Vehicle Systems; SAE Technical Paper No. 2005-01-2003; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Huang, D.; Liu, X.Y.; Wang, Y.L. Effect of fin type on frosting characteristics of an air-source heat pump. J. Refrig. 2012, 33, 12–17. [Google Scholar]
- Liu, N.; Li, J.M.; Li, H.Q. Performance research on heat pump air conditioner using micro-channel heat exchangers. Refrig. Air Cond. 2011, 11, 96–99. [Google Scholar]
- Zhang, L. Analysis of performance of air conditioners with micro-channel heat exchangers. Refrig. Technol. 2010, 30, 33–36. [Google Scholar]
- Qi, Z.G.; Zhao, Y.; Chen, J.P. Performance enhancement study of mobile air conditioning system using microchannel heat exchangers. Int. J. Refrig. 2010, 33, 301–312. [Google Scholar] [CrossRef]
- Wu, J.H.; Xie, F.; Liu, C.P.; Ouyang, G. Adaptability Research on micro-channel heat exchanger applied to heat pump air conditioning system for electrical vehicle. J. Mech. Eng. 2012, 48, 141–147. [Google Scholar] [CrossRef]
- Brodie, B.R.; Takano, Y.; Gocho, M. Evaporator with Integrated Ejector for Automotive Cabin Cooling; SAE Technical Paper No. 2012-01-1048; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Wang, Y.; Shi, J.Y.; Chen, J.P.; Wang, X.N.; Kang, Z.J. Comparative study of two kinds of automotive air conditioning system with three heat exchangers and four-way valve. J. Refrig. 2014, 35, 71–76. [Google Scholar]
- Xie, Z. Research of Electrical Vehicle Heat Pump Air Conditioner and Its Automatic Control System. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2006. [Google Scholar]
- Min, H.T.; Wang, X.D.; Zeng, X.H.; Li, S. Parameter design and computation study for air conditioning system of electric vehicle. Automob. Technol. 2009, 40, 19–22. [Google Scholar]
- Cho, H.; Lee, H.; Park, C. Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf. Appl. Therm. Eng. 2013, 61, 563–569. [Google Scholar] [CrossRef]
- Boewe, D.; Yin, J.; Park, Y.C.; Bullard, C.W.; Hrnjak, P.S. The Role of Suction Line Heat Exchanger in Transcritical R744 Mobile A/C Systems; SAE Technical Paper No. 1999-01-0583; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Li, G.Q.; Yuan, X.L.; Xu, H.T.; Li, M.X. Application of sution line heat exchanger for R134a automotive air-conditioning system. J. Refrig. 2002, 2, 56–59. [Google Scholar]
- Ahn, J.H.; Kang, H.; Lee, H.S.; Kim, Y. Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles. Appl. Energy 2015, 146, 29–37. [Google Scholar] [CrossRef]
- Jokar, A.; Hosni, M.H.; Eckels, S.J. New Generation Integrated Automotive Thermal System; SAE Technical Paper No. 2005-01-3476; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Jokar, A.; Hosni, M.H.; Eckels, S.J. A heat pump for automotive application. In Proceedings of the 8th International Energy Agency Heat Pump Conference, Las Vegas, NY, USA, 30 May–2 June 2005.
- Zha, S.; Hafner, A.; Neksa, P. Investigation of R-744 Voorhees transcritical heat pump system. Int. J. Refrig. 2008, 31, 16–22. [Google Scholar] [CrossRef]
- Wang, X.J. Application of low-temperature heat pump technology in rail vehicle air conditioning. Mech. Electr. Eng. Technol. 2011, 40, 165–168. [Google Scholar]
- Li, H.J.; Zhou, G.H.; Li, A.G.; Li, X.G.; Chen, J. Simulation study on characteristics of ultra-low temperature heat pump air conditioning system for pure electric vehicles. Appl. Mech. Mater. 2014, 580–583, 2475–2479. [Google Scholar] [CrossRef]
- Li, H.J. Study on Performance of Low Temperature Heat Pump Air-Conditioning System for Pure Electric Vehicle. Ph.D. Thesis, Xi’An University of Architecture and Technology, Xian, China, 2015. [Google Scholar]
- Dong, J.K.; Deng, S.M.; Jiang, Y.Q.; Xia, L.; Yao, Y. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump. Appl. Therm. Eng. 2012, 37, 380–387. [Google Scholar] [CrossRef]
- Lee, M.Y.; Kim, Y.C.; Lee, D.Y. Experimental study on frost height of round plate fin-tube heat exchangers for mobile heat pumps. Energies 2012, 5, 3479–3491. [Google Scholar] [CrossRef]
- Qu, M.L.; Xia, L.; Deng, S.M.; Jiang, Y.Q. An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve. Appl. Energy 2012, 97, 327–333. [Google Scholar] [CrossRef]
- Zhang, J.; Lan, J.; Du, R.H.; Gao, G.F. The performance comparison of several defrosting modes for air-source heat pump. J. Refrig. 2012, 33, 47–49. [Google Scholar]
- Dong, J.K.; Jiang, Y.Q.; Yao, Y.; Hu, W.J. Experimental study of the characteristic of defrosting for air source heat pump with phase change energy storage. J. Hunan Univ. 2011, 38, 18–22. [Google Scholar]
- Bilodeau, S. High Performance Climate Control for Alternative Fuel Vehicle; SAE Technical Paper No. 2001-01-1719; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Pomme, V. Reversible Heat Pump System for an Electrical Vehicle; SAE Technical Paper No. 971772; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Ahn, J.H.; Kang, H.; Lee, H.S.; Jung, H.W.; Baek, C.; Kim, Y. Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles. Appl. Energy 2014, 119, 1–9. [Google Scholar] [CrossRef]
- Woo, H.S.; Ahn, J.H.; Oh, M.S.; Kang, H.; Kim, Y.C. Study on the heating performance characteristics of a heat pump system utilizing air and waste heat source for electric vehicles. Air Cond. Refrig. Eng. 2013, 25, 180–186. [Google Scholar] [CrossRef]
- Cho, C.W.; Lee, H.S.; Won, J.P.; Lee, M.Y. Measurement and evaluation of heating performance of heat pump systems using wasted heat from electric devices for an electric bus. Energies 2012, 5, 658–669. [Google Scholar] [CrossRef]
- Lee, D.Y.; Cho, C.W.; Won, J.P.; Park, Y.C.; Lee, M.Y. Performance characteristics of mobile heat pump for a large passenger electric vehicle. Appl. Therm. Eng. 2013, 50, 660–669. [Google Scholar] [CrossRef]
- Suh, I.S.; Lee, M.; Kim, J.; Oh, S.T.; Won, J.P. Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging. Energy 2015, 81, 262–273. [Google Scholar] [CrossRef]
- Zou, H.M.; Jiang, B.; Wang, Q.; Tian, C.Q.; Yan, Y.Y. Performance analysis of a heat pump air conditioning system coupling with battery cooling for electric vehicles. Energy Procedia 2014, 61, 891–894. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, M.S.; Hwang, I.C.; Lim, T.W. Heating performance enhancement of a CO2 heat pump system recovering stack exhaust thermal energy in fuel cell vehicles. Int. J. Refrig. 2007, 30, 1215–1226. [Google Scholar] [CrossRef]
- Lee, H.S.; Won, J.P.; Cho, C.W.; Kim, Y.C.; Lee, M.Y. Heating performance characteristics of stack coolant source heat pump using R744 for fuel cell electric vehicles. J. Mech. Sci. Technol. 2012, 26, 2065–2071. [Google Scholar] [CrossRef]
- Yin, J. Theoretic Study of Motor Train Unit of Solar Air Conditioning System. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2012. [Google Scholar]
- Sun, H. Research of Automatic Control System of the Solar-Assisted Air-Conditioning for Pure Electric Vehicle. Master’s Thesis, Nanchang University, Nanchang, China, 2012. [Google Scholar]
- Ma, G.Y.; Shi, B.X.; Wu, L.Z.; Chen, G.S. Study on solar-assisted heat pump system for electric vehicle air conditioning. Acta Energiae Sol. Sin. 2001, 22, 176–180. [Google Scholar]
- Zhao, C. Soar-Assisted System Study of Automobile Air Conditioner Based on Parallel Technology. Master’s Thesis, Heifei University of Technology, Hefei, China, 2012. [Google Scholar]
- Okuma, T.; Radermacher, R.; Hwang, Y. A novel application of thermoelectric modules in an HVAC system under cold climate operation. J. Electron. Mater. 2012, 41, 1749–1758. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, S.C.; Kim, M.S. Experimental studies on the heating performance of the PTC heater and heat pump combined system in fuel cells and electric vehicles. Int. J. Automot. Technol. 2012, 13, 971–977. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Du, Q. Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review. Energies 2016, 9, 240. https://doi.org/10.3390/en9040240
Peng Q, Du Q. Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review. Energies. 2016; 9(4):240. https://doi.org/10.3390/en9040240
Chicago/Turabian StylePeng, Qinghong, and Qungui Du. 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review" Energies 9, no. 4: 240. https://doi.org/10.3390/en9040240
APA StylePeng, Q., & Du, Q. (2016). Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review. Energies, 9(4), 240. https://doi.org/10.3390/en9040240