Diffusion-Driven Charge Transport in Light Emitting Devices
Abstract
:1. Introduction
2. First Demonstrations of Diffusion-Driven Charge Transport
2.1. Basics of the DDCT Concept
2.2. Theory and Equivalent Circuit
2.3. Diffusion Injected Buried MQW LED (DILED)
2.4. Diffusion-Driven Surface QW LED (S-LED)
3. Laterally Doped DDCT Devices
3.1. Lateral Heterojunction (LHJ) Concept
3.2. Realization of LHJ Using Ion Implantation
3.3. Selective Area Growth as a Method to Realize a Lateral Pn-Junction
4. Outlook of DDCT-Based LEDs
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
LEDs | Light-Emitting Diodes |
DHJ | Double Heterojunction |
DDCT | Diffusion-Driven Charge Transport |
AR | Active Region |
LHJ | Lateral Heterojunction |
GaN | Gallium Nitride |
QW | Quantum Well |
MQW | Multi-Quantum Well |
NW | Nanowires |
QDs | Quantum-Dots |
InGaN | Indium Gallium Nitride |
DILED | Diffusion Injected Light Emitting Diode |
S-LED | Surface Light Emitting Diode |
SAG | Selective Area Growth |
MOCVD | Metal-Organic Chemical Vapor Deposition |
PECVD | Plasma-Enhanced Chemical Vapor Deposition |
EQE | External Quantum Efficiency |
References
- Alferov, Z.I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 2001, 73, 767–782. [Google Scholar] [CrossRef]
- Nakamura, S.; Krames, M.R. History of gallium-nitride-based light-emitting diodes for illumination. Proc. IEEE 2013, 101, 2211–2220. [Google Scholar] [CrossRef]
- Nakamura, S. Background story of the invention of efficient blue InGaN light emitting diodes (Nobel Lecture). Ann. Phys. 2015, 527, 335–349. [Google Scholar] [CrossRef]
- Alferov, Z. Heterostructures for optoelectronics: History and modern trends. Proc. IEEE 2013, 101, 2176–2182. [Google Scholar] [CrossRef]
- Hou, H.W.; Liu, Z.; Teng, J.H.; Palacios, T.; Chua, S.J. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor. Sci. Rep. 2017, 7, 46664. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Elhuni, W.; Streque, J.; Sundaram, S.; Belahsene, S.; El Gmili, Y.; Jordan, M.; Li, X.; Patriarche, G.; Slaoui, A.; et al. Improving InGaN heterojunction solar cells efficiency using a semibulk absorber. Sol. Energy Mater. Sol. Cells 2017, 159, 405–411. [Google Scholar] [CrossRef]
- Steranka, F.M.; Bhat, J.; Collins, D.; Cook, L.; Craford, M.G.; Fletcher, R.; Gardner, N.; Grillot, P.; Goetz, W.; Keuper, M.; et al. High power LEDs—Technology status and market applications. Phys. Status Solidi A 2002, 194, 380–388. [Google Scholar] [CrossRef]
- Schubert, E.F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press, Rensselaer Polytechnic Institute: New York, NY, USA, 2006; pp. 201–221. ISBN 978-0-5117-9054-6. [Google Scholar]
- Parrilla, M.; Newson, D.; Skellern, D.; MacBean, M. Modeling, design and performance of InP/InGaAs double-heterojunction bipolar transistors. In Proceedings of the LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels, Newport, RI, USA, 21–24 April 1992; pp. 414–417. [Google Scholar]
- Homeyer, E.; Mattila, P.; Oksanen, J.; Sadi, T.; Nykänen, H.; Suihkonen, S.; Symonds, C.; Tulkki, J.; Tuomisto, F.; Sopanen, M.; et al. Enhanced light extraction from InGaN/GaN quantum wells with silver gratings. Appl. Phys. Lett. 2013, 102, 081110. [Google Scholar] [CrossRef]
- Sadaf, S.M.; Ra, Y.H.; Nguyen, H.P.T.; Djavid, M.; Mi, Z. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes. Nano Lett. 2015, 15, 6696–6701. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Duan, X.; Lieber, C.M. Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires. J. Am. Chem. Soc. 2000, 122, 188–189. [Google Scholar] [CrossRef]
- Chen, C.C.; Yeh, C.C. Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires. Adv. Mater. 2000, 12, 738–741. [Google Scholar] [CrossRef]
- Lieber, C.M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. In Proceedings of the 2010 3rd International Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010; pp. 5–6. [Google Scholar]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Verzellesi, G.; Saguatti, D.; Meneghini, M.; Bertazzi, F.; Goano, M.; Meneghesso, G.; Zanoni, E. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Feng, M.X.; Sun, Q.; Liu, J.P.; Li, Z.C.; Zhou, Y.; Zhang, S.M.; Yang, H. A Study of Efficiency Droop Phenomenon in GaN-Based Laser Diodes before Lasing. Materials 2017, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.Y.; Jeon, K.S.; Kang, M.G.; Yuh, H.K.; Choi, Y.H.; Lee, J.S. A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates. Sci. Rep. 2017, 7, 44814. [Google Scholar] [CrossRef] [PubMed]
- Hammersley, S.; Watson-Parris, D.; Dawson, P.; Godfrey, M.J.; Badcock, T.J.; Kappers, M.J.; McAleese, C.; Oliver, R.A.; Humphreys, C.J. The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures. J. Appl. Phys. 2012, 111, 083512. [Google Scholar] [CrossRef]
- Bochkareva, N.I.; Rebane, Y.T.; Shreter, Y.G. Efficiency droop in GaN LEDs at high current densities: Tunneling leakage currents and incomplete lateral carrier localization in InGaN/GaN quantum wells. Semiconductors 2014, 48, 1079–1087. [Google Scholar] [CrossRef]
- Mickevičius, J.; Podlipskas, Ž.; Aleksiejnas, R.; Kadys, A.; Jurkevičius, J.; Tamulaitis, G.; Shur, M.S.; Shatalov, M.; Yang, J.; Gaska, R. Nonradiative Recombination, Carrier Localization, and Emission Efficiency of AlGaN Epilayers with Different Al Content. J. Electron. Mater. 2015, 44, 4706–4709. [Google Scholar] [CrossRef]
- Kivisaari, P.; Berg, A.; Karimi, M.; Storm, K.; Limpert, S.; Oksanen, J.; Samuelson, L.; Pettersson, H.; Borgström, M.T. Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. Nano Lett. 2017, 17, 3599–3606. [Google Scholar] [CrossRef] [PubMed]
- Brendel, M.; Kruse, A.; Jönen, H.; Hoffmann, L.; Bremers, H.; Rossow, U.; Hangleiter, A. Auger recombination in GaInN/GaN quantum well laser structures. Appl. Phys. Lett. 2011, 99, 031106. [Google Scholar] [CrossRef]
- Iveland, J.; Martinelli, L.; Peretti, J.; Speck, J.S.; Weisbuch, C. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 2013, 110, 177406. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; McKendry, J.J.D.; Herrnsdorf, J.; Watson, S.; Ferreira, R.; Watson, I.M.; Gu, E.; Kelly, A.E.; Dawson, M.D. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef] [Green Version]
- Kivisaari, P.; Sadi, T.; Li, J.; Rinke, P.; Oksanen, J. On the Monte Carlo Description of Hot Carrier Effects and Device Characteristics of III-N LEDs. Adv. Electron. Mater. 2017, 3, 1600494. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.J.; Hwang, H.; Park, N.M. Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs. Appl. Phys. Lett. 2002, 81, 1326–1328. [Google Scholar] [CrossRef]
- Shaw, J.L.; Treece, R.E.; Patel, D.; Menoni, C.S.; Smith, J.R.; Pankove, J.I. Electron emission from GaN n–p junctions. Appl. Phys. Lett. 2002, 81, 3076–3078. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Katona, T.; Khan, A. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonic 2008, 2, 77–84. [Google Scholar]
- Malyutenko, V.K.; Bolgov, S.S.; Podoltsev, A.D. Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2010, 97, 251110. [Google Scholar] [CrossRef]
- Chang, K.S.; Yang, S.C.; Kim, J.Y.; Kook, M.H.; Ryu, S.Y.; Choi, H.Y.; Kim, G.H. Precise temperature mapping of GaN-based LEDs by quantitative infrared micro-thermography. Sensors 2012, 12, 4648–4660. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Ou, S.L.; Horng, R.H.; Wuu, D.S. Improved Performance of High-Voltage Vertical GaN LEDs via Modification of Micro-Cell Geometry. Appl. Sci. 2017, 7, 506. [Google Scholar] [CrossRef]
- Kivisaari, P.; Oksanen, J.; Tulkki, J. Current injection to free-standing III-N nanowires by bipolar diffusion. Appl. Phys. Lett. 2013, 103, 031103. [Google Scholar] [CrossRef]
- Kivisaari, P.; Oksanen, J.; Tulkki, J. Diffusion-assisted current spreading for III-nitride light-emitting applications. SPIE Proc. 2013, 8625, 862528. [Google Scholar]
- Oksanen, J.; Tulkki, J. Thermophotonic heat pump—A theoretical model and numerical simulations. J. Appl. Phys. 2010, 107, 093106. [Google Scholar] [CrossRef]
- Riuttanen, L.; Kivisaari, P.; Nykänen, H.; Svensk, O.; Suihkonen, S.; Oksanen, J.; Tulkki, J.; Sopanen, M. Diffusion injected multi-quantum well light-emitting diode structure. Appl. Phys. Lett. 2014, 104, 081102. [Google Scholar] [CrossRef]
- Riuttanen, L.; Kivisaari, P.; Svensk, O.; Oksanen, J.; Suihkonen, S. Diffusion Injection in a Buried Multiquantum Well Light-Emitting Diode Structure. IEEE Trans. Electron Devices 2015, 62, 902–908. [Google Scholar] [CrossRef]
- Riuttanen, L.; Kivisaari, P.; Svensk, O.; Vasara, T.; Myllys, P.; Oksanen, J.; Suihkonen, S. Vertical excitation profile in diffusion injected multi-quantum well light emitting diode structure. SPIE Proc. 2015, 9363, 93632A. [Google Scholar]
- Riuttanen, L.; Kivisaari, P.; Svensk, O.; Oksanen, J.; Suihkonen, S. Electrical injection to contactless near-surface InGaN quantum well. Appl. Phys. Lett. 2015, 107, 051106. [Google Scholar] [CrossRef]
- Kivisaari, P.; Kim, I.; Suihkonen, S.; Oksanen, J. Elimination of Lateral Resistance and Current Crowding in Large-Area LEDs by Composition Grading and Diffusion-Driven Charge Transport. Adv. Electron. Mater. 2017, 3, 1700103. [Google Scholar] [CrossRef]
- Xing, H.; Green, D.S.; Yu, H.; Mates, T.; Kozodoy, P.; Keller, S.; Denbaars, S.P.; Mishra, U.K. Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 2003, 42, 50–53. [Google Scholar] [CrossRef]
- Lee, S.N.; Paek, H.S.; Son, J.K.; Kim, H.; Kim, K.K.; Ha, K.H.; Nam, O.H.; Park, Y. Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices. J. Electroceram. 2009, 23, 406–409. [Google Scholar] [CrossRef]
- Benzarti, Z.; Halidou, I.; Bougrioua, Z.; Boufaden, T.; El Jani, B. Magnesium diffusion profile in GaN grown by MOVPE. J. Cryst. Growth 2008, 310, 3274–3277. [Google Scholar] [CrossRef]
- Piprek, J. How to decide between competing efficiency droop models for GaN-based light-emitting diodes. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Kivisaari, P.; Kim, I.; Suihkonen, S.; Oksanen, J. Elimination of resistive losses in large-area LEDs by new diffusion-driven devices. SPIE Proc. 2017, 1, 101240Z. [Google Scholar]
- Edgar, J. Properties of Group III Nitrides; Inst of Engineering & Technology: London, UK, 1994; pp. 272–277. [Google Scholar]
- Sheu, J.K.; Tun, C.J.; Tsai, M.S.; Lee, C.C.; Chi, G.C.; Chang, S.J.; Su, Y.K. n+-GaN formed by Si implantation into p-GaN. J. Appl. Phys. 2002, 91, 1845–1848. [Google Scholar] [CrossRef]
- Zolper, J.C.; Wilson, R.G.; Pearton, S.J.; Stall, R.A. Ca and O ion implantation doping of GaN. Appl. Phys. Lett. 1996, 68, 1945–1947. [Google Scholar] [CrossRef]
- Tan, H.H.; Williams, J.S.; Zou, J.; Cockayne, D.J.H.; Pearton, S.J.; Stall, R.A. Damage to epitaxial GaN layers by silicon implantation. Appl. Phys. Lett. 1996, 69, 2364–2366. [Google Scholar] [CrossRef]
- Lee, M.L.; Yeh, Y.H.; Liu, Z.Y.; Chiang, K.J.; Sheu, J.K. Planar GaN-Based Blue Light-Emitting Diodes with Surface p-n Junction Formed by Selective-Area Si–Ion Implantation. IEEE Trans. Electron Devices 2017, 64, 4156–4160. [Google Scholar] [CrossRef]
- Ping, A.T.; Chen, Q.; Yang, J.W.; Khan, M.A.; Adesida, I. The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN. J. Electron. Mater. 1998, 27, 261–265. [Google Scholar] [CrossRef]
- Tomioka, K.; Ikejiri, K.; Tanaka, T.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. Selective-area growth of III-V nanowires and their applications. J. Mater. Res. 2011, 26, 2127–2141. [Google Scholar] [CrossRef]
- Choi, K.; Arita, M.; Arakawa, Y. Selective-area growth of thin GaN nanowires by MOCVD. J. Cryst. Growth 2012, 357, 58–61. [Google Scholar] [CrossRef]
- Ito, T.; Akiyama, T. Recent Progress in Computational Materials Science for Semiconductor Epitaxial Growth. Crystals 2017, 7, 46. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Matsushima, H.; Shibata, T.; Sawaki, N.; Tadatomo, K.; Okagawa, H.; Ohuchi, Y.; Honda, Y.; Matsue, T. Selective Area Growth of GaN by MOVPE and HVPE. MRS Proc. 1997, 482, 257. [Google Scholar] [CrossRef]
- Suihkonen, S.; Ali, M.; Svensk, O.; Sintonen, S.; Sopanen, M.; Lipsanen, H.; Törmä, P.T.; Nevedomsky, V.; Bert, N. Patterning of sapphire/GaN substrates. Phys. Status Solidi C 2011, 8, 1509–1512. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, H.; Lin, Z.; Yang, H.; Hong, X.; Li, G. Study of defects in LED epitaxial layers grown on the optimized hemispherical patterned sapphire substrates. Jpn. J. Appl. Phys. 2014, 53, 025503. [Google Scholar] [CrossRef]
- Nam, O.H.; Bremser, M.D.; Zheleva, T.S.; Davis, R.F. Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 1997, 71, 2638–2640. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Nishiyama, K.; Motogaito, A.; Miyake, H.; Iyechika, Y.; Maeda, T. Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth. Phys. Status Solidi A 1999, 176, 535–543. [Google Scholar] [CrossRef]
- Beaumont, B.; Vennegues, P.; Gibart, P. Epitaxial Lateral Overgrowth of GaN. Phys. Status Solidi B 2001, 227, 1–43. [Google Scholar] [CrossRef]
- Gibart, P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth. Rep. Progress Phys. 2004, 67, 667–715. [Google Scholar] [CrossRef]
- Wang, T. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission. Semicond. Sci. Technol. 2016, 31, 093003. [Google Scholar] [CrossRef]
- Ronning, C. Ion implantation into gallium nitride. Phys. Rep. 2001, 351, 349–385. [Google Scholar] [CrossRef]
- Tanaka, A.; Chen, R.; Jungjohann, K.L.; Dayeh, S.A. Strong Geometrical Effects in Submillimeter Selective Area Growth and Light Extraction of GaN Light Emitting Diodes on Sapphire. Sci. Rep. 2015, 5, 17314. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.T.; Djavid, M.; Cui, K.; Mi, Z. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology 2012, 23, 194012. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Tran, T.T.D.; Ng, K.W.; Ko, W.S.; Chuang, L.C.; Sedgwick, F.G.; Chang-Hasnain, C. Nanolasers grown on silicon. Nat. Photonic 2011, 5, 170–175. [Google Scholar] [CrossRef]
- Hurni, C.A.; David, A.; Cich, M.J.; Aldaz, R.I.; Ellis, B.; Huang, K.; Tyagi, A.; DeLille, R.A.; Craven, M.D.; Steranka, F.M.; et al. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 2015, 106, 031101. [Google Scholar] [CrossRef]
- Peter, M.; Laubsch, A.; Bergbauer, W.; Meyer, T.; Sabathil, M.; Baur, J.; Hahn, B. New developments in green LEDs. Phys. Status Solidi A 2009, 206, 1125–1129. [Google Scholar] [CrossRef]
- Saito, S.; Hashimoto, R.; Hwang, J.; Nunoue, S. InGaN Light-Emitting Diodes on c-Face Sapphire Substrates in Green Gap Spectral Range. Appl. Phys. Express 2013, 6, 111004. [Google Scholar] [CrossRef]
- Craford, M.G. From Holonyak to Today. Proc. IEEE 2013, 101, 2170–2175. [Google Scholar] [CrossRef]
- Lee, L.Y. Cubic zincblende gallium nitride for green-wavelength light-emitting diodes. Mater. Sci. Technol. 2017, 33, 1570–1583. [Google Scholar] [CrossRef]
- Bayerl, D.; Kioupakis, E. Visible-Wavelength Polarized-Light Emission with Small-Diameter InN Nanowires. Nano Lett. 2014, 14, 3709–3714. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.T.; Zhang, S.; Connie, A.T.; Kibria, M.G.; Wang, Q.; Shih, I.; Mi, Z. Breaking the Carrier Injection Bottleneck of Phosphor-Free Nanowire White Light-Emitting Diodes. Nano Lett. 2013, 13, 5437–5442. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Kivisaari, P.; Oksanen, J.; Suihkonen, S. Diffusion-Driven Charge Transport in Light Emitting Devices. Materials 2017, 10, 1421. https://doi.org/10.3390/ma10121421
Kim I, Kivisaari P, Oksanen J, Suihkonen S. Diffusion-Driven Charge Transport in Light Emitting Devices. Materials. 2017; 10(12):1421. https://doi.org/10.3390/ma10121421
Chicago/Turabian StyleKim, Iurii, Pyry Kivisaari, Jani Oksanen, and Sami Suihkonen. 2017. "Diffusion-Driven Charge Transport in Light Emitting Devices" Materials 10, no. 12: 1421. https://doi.org/10.3390/ma10121421
APA StyleKim, I., Kivisaari, P., Oksanen, J., & Suihkonen, S. (2017). Diffusion-Driven Charge Transport in Light Emitting Devices. Materials, 10(12), 1421. https://doi.org/10.3390/ma10121421