Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Glass Powders and Pellets
2.2. Characterization of the Glass Powders and Pellets
2.3. Lixiviation of Zn2+
2.4. Biofilm Study
2.4.1. Microorganisms and Growth Conditions
2.4.2. Biofilm Formation Assays
2.4.3. Biofilm Quantification
2.4.4. Scanning Electron Microscopy (SEM)
2.4.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Glass Pellets
3.2. Chemical Stability: Lixiviation of Zn2+
3.3. X-ray Photoelectron Spectroscopy Study
3.4. Antimicrobial Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Kane, R.S.; Deschatelets, P.; Whitesides, G.M. Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir 2003, 19, 2388–2391. [Google Scholar] [CrossRef]
- Page, K.; Wilson, M.; Parkin, I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009, 19, 3819–3831. [Google Scholar] [CrossRef]
- Park, K.D.; Kim, Y.S.; Han, D.K.; Kim, Y.H.; Lee, E.H.B.; Suh, H.; Choi, K.S. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 1998, 19, 851–859. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef]
- Seil, J.T.; Webster, T.J. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater. 2011, 7, 2579–2584. [Google Scholar] [CrossRef] [PubMed]
- Colon, G.; Ward, B.C.; Webster, T.J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. Part A 2006, 78, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Buerki-Thurnherr, T.; Xiao, L.; Diener, L.; Arslan, O.; Hirsch, C.; Maeder-Althaus, X.; Grieder, K.; Wampfler, B.; Mathur, S.; Wick, P.; et al. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 2013, 7, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Reed, R.B.; Ladner, D.A.; Higgins, C.P.; Westerhoff, P.; Ranville, J.F. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ. Toxicol. Chem. 2012, 31, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Chevallet, M.; Veronesi, G.; Fuchs, A.; Mintz, E.; Michaud-Soret, I.; Deniaud, A. Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biochim. Biophys. Acta Gen. Subj. 2016. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 2010, 199, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Zhang, Y.; Tian, F.; Zhao, G.; Yu, Q.; Jiang, F.; Liu, Y. Toxicity of nano zinc oxide to mitochondria. Toxicol. Res. 2012, 1, 137–144. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 2014, 9, e111289. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Williams, P.L.; Diamond, S.A. Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 2013, 172, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Rousk, J.; Ackermann, K.; Curling, S.F.; Jones, D.L. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities. PLoS ONE 2012, 7, e34197. [Google Scholar] [CrossRef] [PubMed]
- Fukui, H.; Horie, M.; Endoh, S.; Kato, H.; Fujita, K.; Nishio, K.; Komaba, L.K.; Maru, J.; Miyauhi, A.; Nakamura, A.; et al. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem. Biol. Interact. 2012, 198, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Tejeda, L.; Prado, C.; Cabal, B.; Sanz, J.; Torrecillas, R.; Moya, J.S. Antibacterial and antifungal activity of ZnO containing glasses. PLoS ONE 2015, 10, e0136490. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Owen, D.G. Liquid Immiscibility in the System Na2O-ZnO-B2O3-SiO2. J. Am. Ceram. Soc. 1981, 64, 360–367. [Google Scholar] [CrossRef]
- Palomares, F.J.; Paz, E.; Soria, F.; Moya, J.S.; Burianek, M.; Muehlberg, M.; Schneider, H. Surface Chemistry of Ion Irradiated and Heat-Treated Mullite-Type Bi2Ga4O9 Single Crystals. J. Am. Ceram Soc. 2009, 92, 2993–2998. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Maestre, J.R.; Aguilar, L.; Mateo, M.; Giménez, M.J.; Méndez, M.M.; Alou, L.; Granizo, J.J.; Prieto, J. In vitro interference of tigecycline at subinhibitory concentrations on biofilm development by Enterococcus faecalis. J. Antimicrob. Chemother. 2012, 67, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- López-Píriz, R.; Solá-Linares, E.; Rodriguez-Portugal, M.; Malpica, B.; Díaz-Güemes, I.; Enciso, S.; Esteban-Tejeda, L.; Cabal, B.; Granizo, J.J.; Moya, J.S.; et al. Evaluation in a dog model of three antimicrobial glassy coatings: Prevention of bone loss around implants and microbial assessments. PLoS ONE 2015, 10, e0140374. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Killen, E.; Lim, M.; Gunawan, C.; Amal, R. The effect of common bacterial growth media on zinc oxide thin films: Identification of reaction products and implications for the toxicology of ZnO. RSC Adv. 2014, 4, 4363–4370. [Google Scholar] [CrossRef]
- Esteban-Tejeda, L.; da Silva, A.C.; Mello-Castanho, S.R.; Pacharroman, C.; Moya, J.S. Kinetics of dissolution of a biocide soda-lime glass powder containing silver nanoparticles. J. Nanopart. Res. 2013, 15, 1447. [Google Scholar] [CrossRef]
- Moya, J.S.; Esteban-Tejeda, L.; Pecharromán, C.; Mello-Castanho, S.R.H.; da Silva, A.C.; Malpartida, F. Glass powders with a high content of calcium oxide: A step towards a “green” universal biocide. Adv. Eng. Mater. 2011, 13, B256–B260. [Google Scholar] [CrossRef]
- Gunawan, C.; Teoh, W.Y.; Ricardo; Marquis, C.P.; Amal, R. Zinc Oxide Nanoparticles Induce Cell Filamentation in Escherichia coli. Part. Part. Syst. Charact. 2013, 30, 375–380. [Google Scholar] [CrossRef]
- Esteban-Tejeda, L.; Cabal, B.; Torrecillas, R.; Prado, C.; Fernandez-Garcia, E.; López-Piriz, R.; Quintero, F.; Pou, J.; Penide, J.; Moya, J.S. Antimicrobial activity of submicron glass fibres incorporated as a filler to a dental sealer. Biomed. Mater. (Bristol) 2016, 11, 045014. [Google Scholar] [CrossRef] [PubMed]
- Beikler, T.; Flemmig, T.F. Oral biofilm-associated diseases: Trends and implications for quality of life, systemic health and expenditures. Periodontology 2000 2011, 55, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Bosman, W.M.; Borger van der Burg, B.L.; Schuttevaer, H.M.; Thoma, S.; Hedeman Joosten, P.P. Infections of intravascular bare metal stents: A case report and review of literature. Eur. J. Vasc. Endovasc. Surg. 2014, 47, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Dale, H.; Hallan, G.; Hallan, G.; Espehaug, B.; Havelin, L.I.; Engesaeter, L.B. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop. 2009, 80, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Yokoe, D.S.; Avery, T.R.; Platt, R.; Huang, S.S. Reporting surgical site infections following total hip and knee arthroplasty: Impact of limiting surveillance to the operative hospital. Clin. Infect. Dis. 2013, 57, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Pawasarat, I.M.; Azzam, K.A.; Joshi, A.; Hansen, E.N.; Bozic, K.J. Periprosthetic joint infection: The economic impact of methicillin-resistant infections. J. Arthroplast. 2010, 25 (Suppl. 6), 103–107. [Google Scholar] [CrossRef] [PubMed]
Medium | Zn2+ (ppm) | SD |
---|---|---|
Distillate Water | 0.5 | 0.01 |
Water sea-like (3 wt % NaCl) | 0.47 | 0.01 |
Luria Bertani (LB) | 126.3 | 0.06 |
Yeast Extract (0.5 wt %) | 192.681 | 0.06 |
l-Glutamine (0.5 wt %) | 386.6 | 0.06 |
Human Serum | 248.99 | 0.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-Tejeda, L.; Palomares, F.J.; Cabal, B.; López-Píriz, R.; Fernández, A.; Sevillano, D.; Alou, L.; Torrecillas, R.; Moya, J.S. Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content. Materials 2017, 10, 167. https://doi.org/10.3390/ma10020167
Esteban-Tejeda L, Palomares FJ, Cabal B, López-Píriz R, Fernández A, Sevillano D, Alou L, Torrecillas R, Moya JS. Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content. Materials. 2017; 10(2):167. https://doi.org/10.3390/ma10020167
Chicago/Turabian StyleEsteban-Tejeda, Leticia, Francisco J. Palomares, Belén Cabal, Roberto López-Píriz, Adolfo Fernández, David Sevillano, Luis Alou, Ramón Torrecillas, and José S. Moya. 2017. "Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content" Materials 10, no. 2: 167. https://doi.org/10.3390/ma10020167
APA StyleEsteban-Tejeda, L., Palomares, F. J., Cabal, B., López-Píriz, R., Fernández, A., Sevillano, D., Alou, L., Torrecillas, R., & Moya, J. S. (2017). Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content. Materials, 10(2), 167. https://doi.org/10.3390/ma10020167