Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva
Abstract
:1. Introduction
2. Results
2.1. Growth Phase
2.2. pH Results
2.3. The Bacteria Colonization Study with FM
2.4. Surface Topography Analysis with SEM after Conducting Constant Immersion for 336 h
2.5. The Results of OCP
2.6. Electrochemical Impedance Spectroscopy (EIS) Studies
2.7. Potentiodynamic Polarization Curves Tests
3. Discussion
4. Materials and Methods
4.1. Preparation of Test Materials
4.2. Bacterium
4.3. Medium and Solution
4.4. Growth Phase Experiment
4.5. Fluorescent Microscopy (FM)
4.6. Surface Analysis by Scanning Electron Microscopy (SEM)
4.7. pH Tests
4.8. Electrochemical Experiments at Different Times
5. Conclusions
- (1)
- S. sanguis can adhere to the surface of titanium and the adsorption of bacteria leads to the formation of local biofilm. The biofilm increased in thickness and size with increasing the immersion time.
- (2)
- The possible contribution of S. sanguis to corrosion of titanium cannot be ignored. Adsorption of S. sanguis on titanium, especially when growing as biofilm, promotes the localized corrosion.
- (3)
- Results of the electrochemical techniques clearly show that S. sanguis can decrease the Rt and Ecorr but increase the icorr, indicating that the corrosion rate is clearly accelerated in the presence of S. sanguis.
- (4)
- pH is decreased in the presence of S. sanguis, which forms a self catalytic corrosion environment and results in the dissolution of titanium at the anodic areas, thus, accelerates the corrosion rate and gives rise to the localized corrosion.
- (5)
- The corrosion of titanium is the co-effect of lactic acid secreted by S. sanguis and biofilm formed by S. sanguis, both the biofilm and acid metabolite accelerate the dissolution of passive film (TiO2) and lead to a tendency of the localized corrosion.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mabilleau, G.; Bourdon, S.; Joly-Guillou, M.L.; Filmon, R.; Baslé, M.F.; Chappard, D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006, 2, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Harzer, W.; Schröter, A.; Gedrange, T.; Muschter, F. Sensitivity of titanium brackets to the corrosive influence of fluoride-containing toothpaste and tea. Angle Orthod. 2001, 71, 318–323. [Google Scholar] [PubMed]
- Tengvall, P.; Lundström, I. Physico-chemical considerations of titanium as a biomaterial. Clin. Mater. 1992, 9, 115–134. [Google Scholar] [CrossRef]
- Pan, J.; Leygraf, C.; Thierry, D.; Ektessabi, A.M. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J. Biomed. Mater. Res. 1997, 35, 309–318. [Google Scholar] [CrossRef]
- Urban, R.M.; Jacobs, J.J.; Tomlinson, M.J.; Gavrilovic, J.; Black, J.; Peoc’h, M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J. Bone Jt. Surg. Am. 2000, 82, 457–476. [Google Scholar] [CrossRef]
- Lalor, P.A.; Revell, P.A.; Gray, A.B.; Wright, S.; Railton, G.T.; Freeman, M.A. Sensitivity to titanium, a cause of implant failure? Bone Jt. J. 1991, 73, 25–28. [Google Scholar]
- Basketter, D.A.; Whittle, E.; Monk, B. Possible allergy to complex titanium salt. Contact Dermat. 2000, 42, 310–311. [Google Scholar]
- Yamauchi, R.; Morita, A.; Tsuji, T. Pacemaker dermatitis from titanium. Contact Dermat. 2000, 42, 52–53. [Google Scholar]
- Hanawa, T.; Asami, K.; Asaoka, K. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J. Biomed. Mater. Res. 1998, 40, 530–538. [Google Scholar] [CrossRef]
- Qu, Q.; Lei, W.; Chen, Y.; Li, L.; He, Y.; Ding, Z. Corrosion behavior of titanium in enriched artificial saliva by lactic acid. Materials 2014, 7, 5528–5542. [Google Scholar] [CrossRef]
- Paster, B.J.; Olsen, I.; Aas, J.A.; Dewhirst, F.E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000, 42, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kolenbrender, P.E.; Pamler, R.J.; Periasamy, S.; Jakubovics, N.S. Oral multispecies biofilm development and the key of cell-cell distance. Nat. Rev. Microbiol. 2010, 8, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Tagger, G.N.; Machtei, E.E.; Horwitz, J.; Peled, M. Fracture of dental implants: Literature review and report of a case. Implant Dent. 2002, 11, 137–143. [Google Scholar] [CrossRef]
- Del-Curto, B.; Brunella, M.F.; Giordano, C.; Pedeferri, M.P.; Valtulina, V.; Visai, L.; Cigada, A. Decreased bacterial adhesion to surface-treated titanium. Int. J. Artif. Organs. 2005, 28, 718–730. [Google Scholar] [PubMed]
- Embleton, J.V.; Newman, H.N.; Wilson, M. Influence of growth model and sucrose on susceptibility of Streptococcus sanguis to amine fluorides and amine fluoride-inorganic fluoride combinations. Appl. Environ. Microbiol. 1998, 64, 3503–3506. [Google Scholar] [PubMed]
- Darke, D.R.; Paul, J.; Keller, J.C. Primary bacterial colonization of implant surfaces. Int. J. Oral Maxillofac. Implants. 1990, 14, 226–232. [Google Scholar]
- Videla, H.A.; de Mele, M.F.L.; Brankevich, G. Technical note: Assessment of corrosion and microfouling of several metals in polluted seawater. Corrosion 1988, 44, 423–426. [Google Scholar] [CrossRef]
- Mansfeld, F. The interaction of bacteria and metal surfaces. Electrochim. Acta 2007, 52, 7670–7680. [Google Scholar] [CrossRef]
- Wilson, W.; Kpendema, H.; Noar, J.H.; Hunt, N.; Mordan, N.J. Corrosion of intra-oral magnets in the presence and absence of biofilm of Streptococcus sanguis. Biomaterials 1995, 16, 721–725. [Google Scholar] [CrossRef]
- Hu, W.Q.; Chen, L.D.; Wang, Y.J.; Sun, D.F.; Han, D.W. The influence of Streptococcus sanguis on corrosion resistance of magnetic retainer. Shanghai J. Stomatol. 2008, 17, 88–91. [Google Scholar]
- Souza, J.C.M.; Ponthiaux, P.; Henriques, M.; Oliveira, R.; Teughels, W.; Celis, J.P.; Rocha, L.A. Corrosion behaviour of titanium in the presence of treptococcus mutans. J. Dent. 2013, 41, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.; Tian, J.T.; Chen, S.G.; Lei, Y.H.; Chang, X.T.; Liu, T.; Yin, Y.S. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens:(I) Corrosion behavior. Mater. Sci. Eng. C 2009, 29, 751–755. [Google Scholar] [CrossRef]
- Fowler, A.C.; Kyrke-Smith, T.M.; Winstanley, H.F. The development of biofilm architecture. Proc. R. Soc. A 2016, 472, 20150798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microb. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Svensäter, G.; Takahashi-Abbe, S.; Abbe, K.; Birkhed, D.; Yamada, T.; Edwardsson, S. Anaerobic and aerobic metabolism of sorbitol in Streptococcus sanguis and Streptococcus mitior. J. Dent. Res. 1985, 64, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Elter, C.; Heuer, W.; Demling, A.; Hannig, M.; Heidenblut, T.; Bach, F.W.; Stiesch-Scholz, M. Supra-and subgingival biofilm formation on implant abutments with different surface characteristics. Int. J. Oral Maxillofac. Implants 2008, 23, 327–334. [Google Scholar] [PubMed]
- Moradi, M.; Song, Z.; Yang, L.; He, J. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel. Corros. Sci. 2014, 84, 103–112. [Google Scholar] [CrossRef]
- Mansfeld, F. The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition. Rev. Mater. Corros. 2003, 49, 489–502. [Google Scholar] [CrossRef]
- Lebrini, M.; Laggrenee, M.; Vezin, H.; Traisnel, M.; Bentiss, F. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric solution by some new macrocylic polyther compounds. Corros. Sci. 2007, 49, 2254–2269. [Google Scholar] [CrossRef]
- Assis, S.L.D.; Stephan, W.; Isolda, C. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta 2006, 50, 1815–1819. [Google Scholar] [CrossRef]
- Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56, 187–209. [Google Scholar] [CrossRef] [PubMed]
- Wigebder, J.; Neu, T.R.; Flemming, H.C. What are bacterial exteacellular polymeric substances? In Microbial Extracellular Polymeric Substances; Springer: Heidelberg, Germany, 1999; pp. 1–19. [Google Scholar]
- Breur, H.J.A.; Wit, J.H.W.; Van Tumhout, J.; Ferrari, G.M. Electrochemical impedance study on the formation of biological iron phosphate layers. Electrochim. Acta 2002, 47, 2289–2295. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Li, X.; Xu, H.; Wu, J. Influence of biofilm growth on corrosion potential of metal immersed in seawater. Mater. Corros. 2004, 55, 30–35. [Google Scholar] [CrossRef]
- Heydorn, A.; Nielsen, A.T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersbøll, B.K.; Molin, S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146, 2395–2407. [Google Scholar] [CrossRef] [PubMed]
- Danese, P.N.; Partt, L.A.; Kolter, R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 2000, 182, 3593–3596. [Google Scholar] [CrossRef] [PubMed]
- Watnick, P.I.; Lauriano, C.M.; Klose, K.E.; Croal, L.; Kolter, R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 2001, 39, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.F.; Ringerberg, D.B.; White, D.C. Differential corrosion rate of carbon steel by combinations of Bacillus sp., Hafina alvei and Desulfovibrio gigas established by phospholipids’ analysis of electrode biofilm. Corros. Sci. 1992, 33, 1843–1853. [Google Scholar] [CrossRef]
- Qu, Q.; Hea, Y.; Wanga, L.; Xua, H.; Lib, L.; Chena, Y.; Dinga, Z. Corrosion bahavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2. Corros. Sci. 2015, 91, 321–329. [Google Scholar] [CrossRef]
- Fekry, A.M. The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4V alloy in oxalic acid. Electrochim. Acta 2009, 54, 3480–3489. [Google Scholar] [CrossRef]
- Misiuk, W. Extractive spectrophotometric methods for the determination of doxepin hydrochloride in pharmaceutical preparations using titanium (IV) and iron (III) thiocyanate complexes. Farmaco 2005, 60, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.C.; Henriques, M.; Oliverira, R.; Teughels, W.; Celis, J.P. Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling 2010, 26, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Iwami, Y.; Yamada, T. Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Infect. Immun. 1985, 50, 378–381. [Google Scholar] [PubMed]
- Koike, M.; Fujii, H. In vitro assessment of corrosive properties of titanium as a biomaterial. J. Oral Rehabil. 2001, 28, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Masatoshi, T.; Masafumi, K.; Yukyo, T. Corrosion behavior of Ti-Ag alloys used in dentistry in lactid acid solution. Met. Mater. Int. 2011, 17, 175–179. [Google Scholar]
- Laurent, F.; Grosgogeat, B.; Reclaru, L.; Dalard, F.; Lissac, M. Comparison of corrosion behaviour in presence of oral bacteria. Biomaterials 2000, 22, 2273–2282. [Google Scholar] [CrossRef]
t | Rs | Q2 | n2 | Rb | Q1 | Rt | n1 |
---|---|---|---|---|---|---|---|
(h) | (Ω∙cm2) | (Ω−1∙cm−2∙sn) | - | (Ω∙cm2) | (Ω−1∙cm−2∙sn) | (×105 Ω∙cm2) | - |
24 | 12.82 | - | - | - | 91.97 | 3.24 | 0.8944 |
48 | 6.30 | - | - | - | 99.36 | 2.67 | 0.8955 |
72 | 5.72 | 7.224 | 0.8180 | 494.7 | 102.40 | 1.13 | 0.8560 |
120 | 19.03 | 10.49 | 0.7827 | 395.3 | 107.99 | 0.41 | 0.7431 |
168 | 68.57 | 11.70 | 0.6940 | 529.3 | 119.10 | 0.35 | 0.6183 |
336 | 74.76 | 15.48 | 0.5038 | 609.8 | 122.54 | 0.23 | 0.5832 |
t (h) | Ecorr (mV vs. SCE) | icorr (μA/cm2) | βa (mV/degree) | βc (mV/degree) |
---|---|---|---|---|
24 | −395 | 0.55 | 220 | −193 |
48 | −425 | 0.99 | 158 | −163 |
72 | −434 | 1.21 | 178 | −157 |
120 | −524 | 1.74 | 369 | −525 |
168 | −533 | 2.02 | 223 | −230 |
336 | −550 | 4.01 | 247 | −427 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, S.; Qu, Q.; Zuo, L.; He, Y.; Zhu, B.; Li, C. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva. Materials 2017, 10, 255. https://doi.org/10.3390/ma10030255
Li L, Li S, Qu Q, Zuo L, He Y, Zhu B, Li C. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva. Materials. 2017; 10(3):255. https://doi.org/10.3390/ma10030255
Chicago/Turabian StyleLi, Lei, Shunling Li, Qing Qu, Limei Zuo, Yue He, Baolin Zhu, and Cong Li. 2017. "Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva" Materials 10, no. 3: 255. https://doi.org/10.3390/ma10030255
APA StyleLi, L., Li, S., Qu, Q., Zuo, L., He, Y., Zhu, B., & Li, C. (2017). Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva. Materials, 10(3), 255. https://doi.org/10.3390/ma10030255