Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. HPDLC Grating Fabrication
2.3. Lasing Characterization
3. Results and Discussion
3.1. Spectroscopic Characterization
3.2. The Mechanism of HPDLC DFB Laser
3.3. Tri-Wavelength Lasing from Dye-Doped HPDLC DFB Laser
3.4. Tuning Property for the Tri-Wavelength Lasing HPDLC DFB Laser by Elevating Temperature
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Llobera, A.; Juvert, J.; Gonzalez-Fernandez, A.; Ibarlucea, B.; Carregal-Romero, E.; Buttgenbach, S.; Fernandez-Sanchez, C. Biofunctionalized all-polymer photonic lab on a chip with integrated solid-state light emitter. Light Sci. Appl. 2015, 4, e271. [Google Scholar] [CrossRef]
- Samuel, I.D.W.; Turnbull, G.A. Organic semiconductor lasers. Chem. Rev. 2007, 107, 1272–1295. [Google Scholar] [CrossRef] [PubMed]
- Chenais, S.; Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 2012, 61, 390–406. [Google Scholar] [CrossRef]
- Grivas, C.; Pollnau, M. Organic solid-state integrated amplifiers and lasers. Laser Photonics Rev. 2012, 6, 419–462. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Forrest, S.R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 2011, 84, 241301. [Google Scholar] [CrossRef]
- Woggon, T.; Klinkhammer, S.; Lemmer, U. Compact spectroscopy system based on tunable organic semiconductor lasers. Appl. Phys. B Lasers Opt. 2010, 99, 47–51. [Google Scholar] [CrossRef]
- Mhibik, O.; Forget, S.; Ott, D.; Venus, G.; Divliansky, I.; Glebov, L.; Chenais, S. An ultra-narrow linewidth solution-processed organic laser. Light Sci. Appl. 2016, 5, e16026. [Google Scholar] [CrossRef]
- Vannahme, C.; Dufva, M.; Kristensen, A. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor. Light Sci. Appl. 2015, 4, e269. [Google Scholar] [CrossRef]
- Bulovic, V.; Kozlov, V.G.; Khalfin, V.B.; Forrest, S.R. Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities. Science 1998, 279, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Tessler, N.; Denton, G.J.; Friend, R.H. Lasing from conjugated-polymer microcavities. Nature 1996, 382, 695–697. [Google Scholar] [CrossRef]
- Whitworth, G.L.; Zhang, S.; Stevenson, J.R.Y.; Ebenhoch, B.; Samuel, I.D.W.; Turnbull, G.A. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Appl. Phys. Lett. 2015, 107, 163301. [Google Scholar] [CrossRef]
- Vasdekis, A.E.; Tsiminis, G.; Ribierre, J.C.; O’Faolain, L.; Krauss, T.F.; Turnbull, G.A.; Samuel, I.D.W. Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Opt. Express 2006, 14, 9211–9216. [Google Scholar] [CrossRef] [PubMed]
- Hermann, S.; Shallcross, R.C.; Meerholz, K. Simple Fabrication of an Organic Laser by Microcontact Molding of a Distributed Feedback Grating. Adv. Mater. 2014, 26, 6019–6024. [Google Scholar] [CrossRef] [PubMed]
- Bunning, T.J.; Natarajan, L.V.; Tondiglia, V.P.; Sutherland, R.L. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci. 2000, 30, 83–115. [Google Scholar] [CrossRef]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photonics 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Vannahme, C.; Klinkhammer, S.; Lemmer, U.; Mappes, T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt. Express 2011, 19, 8179–8186. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.H.; Deng, S.P.; Huang, W.B.; Xuan, L.; Hu, L.F.; Liu, Y.G.; Ma, J. Organic dual-wavelength distributed feedback laser empowered by dye-doped holography. J. Mater. Chem. 2012, 22, 23331–23334. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Liu, L.J.; Liu, M.H.; Liu, Y.G.; Peng, Z.H.; Yao, L.S.; Wang, Q.D.; Wang, S.X.; Cao, Z.L.; Ma, J.; et al. Tunable surface-emitting dual-wavelength laser from a blended gain layer with an external holographic grating feedback structure. Opt. Mater. Express 2016, 6, 3320–3329. [Google Scholar] [CrossRef]
- Liu, M.H.; Liu, Y.G.; Zhang, G.Y.; Peng, Z.H.; Li, D.Y.; Ma, J.; Xuan, L. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders. J. Phys. D Appl. Phys. 2016, 49, 465102. [Google Scholar] [CrossRef]
- Huang, W.; Diao, Z.; Liu, Y.; Peng, Z.; Yang, C.; Ma, J.; Xuan, L. Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique. Org. Electron. 2012, 13, 2307–2311. [Google Scholar] [CrossRef]
- Tammer, M.; Monkman, A.P. Measurement of the anisotropic refractive indices of spin cast thin poly(2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) films. Adv. Mater. 2002, 14, 210–212. [Google Scholar] [CrossRef]
- Vannahme, C.; Klinkhammer, S.; Christiansen, M.B.; Kolew, A.; Kristensen, A.; Lemmer, U.; Mappes, T. All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation. Opt. Express 2010, 18, 24881–24887. [Google Scholar] [CrossRef] [PubMed]
- Samuel, I.D.W.; Namdas, E.B.; Turnbull, G.A. How to recognize lasing. Nat. Photonics 2009, 3, 546–549. [Google Scholar] [CrossRef]
- Kogelnik, H.; Shank, C.V. Coupled-Wave Theory of Distributed Feedback Lasers. J. Appl. Phys. 1972, 43, 2327–2335. [Google Scholar] [CrossRef]
- Steinle, T.; Kumar, V.; Floess, M.; Steinmann, A.; Marangoni, M.; Koch, C.; Wege, C.; Cerullo, G.; Giessen, H. Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy. Light Sci. Appl. 2016, 5, e16149. [Google Scholar] [CrossRef]
- Liang, S. T. Physical Optics; Chapter 1; Electronics Industry: Beijing, China, 2011. [Google Scholar]
- Ziebarth, J.M.; McGehee, M.D. Measuring the refractive indices of conjugated polymer films with Bragg grating outcouplers. Appl. Phys. Lett. 2003, 83, 5092–5094. [Google Scholar] [CrossRef]
- Turnbull, G.A.; Andrew, P.; Barnes, W.L.; Samuel, I.D.W. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Phys. Rev. B 2003, 67, 165107. [Google Scholar] [CrossRef]
- Lozano, G.; Rodriguez, S.R.K.; Verschuuren, M.A.; Rivas, J.G. Metallic nanostructures for efficient LED lighting. Light Sci. Appl. 2016, 5, e16080. [Google Scholar] [CrossRef]
- Kapon, E.; Hardy, A.; Katzir, A. The Effect of Complex Coupling-Coefficients on Distributed Feedback Lasers. IEEE J. Quantum Electron. 1982, 18, 66–71. [Google Scholar] [CrossRef]
- Schneider, D.; Rabe, T.; Riedl, T.; Dobbertin, T.; Kroger, M.; Becker, E.; Johannes, H.H.; Kowalsky, W.; Weimann, T.; Wang, J.; et al. Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 2004, 85, 1886–1888. [Google Scholar] [CrossRef]
- Criante, L.; Lucchetta, D.E.; Vita, F.; Castagna, R.; Simoni, F. Distributed feedback all-organic microlaser based on holographic polymer dispersed liquid crystals. Appl. Phys. Lett. 2009, 94, 111114. [Google Scholar] [CrossRef]
- Cornil, J.; Beljonne, D.; Calbert, J.P.; Bredas, J.L. Interchain interactions in organic pi-conjugated materials: Impact on electronic structure, optical response, and charge transport. Adv. Mater. 2001, 13, 1053–1067. [Google Scholar] [CrossRef]
- Riechel, S.; Lemmer, U.; Feldmann, J.; Benstem, T.; Kowalsky, W.; Scherf, U.; Gombert, A.; Wittwer, V. Laser modes in organic solid-state distributed feedback lasers. Appl. Phys. B Lasers Opt. 2000, 71, 897–900. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Tazawa, M.; Yoshimura, K.; Ogiwara, A. Thermal control of transmittance/diffraction states of holographic structures composed of polymer and liquid crystal phases. Sol. Energy Mater. Sol. Cells 2010, 94, 1747–1752. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liu, Y.; Peng, Z.; Wang, S.; Wang, Q.; Mu, Q.; Cao, Z.; Xuan, L. Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film. Materials 2017, 10, 509. https://doi.org/10.3390/ma10050509
Liu M, Liu Y, Peng Z, Wang S, Wang Q, Mu Q, Cao Z, Xuan L. Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film. Materials. 2017; 10(5):509. https://doi.org/10.3390/ma10050509
Chicago/Turabian StyleLiu, Minghuan, Yonggang Liu, Zenghui Peng, Shaoxin Wang, Qidong Wang, Quanquan Mu, Zhaoliang Cao, and Li Xuan. 2017. "Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film" Materials 10, no. 5: 509. https://doi.org/10.3390/ma10050509
APA StyleLiu, M., Liu, Y., Peng, Z., Wang, S., Wang, Q., Mu, Q., Cao, Z., & Xuan, L. (2017). Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film. Materials, 10(5), 509. https://doi.org/10.3390/ma10050509