Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes
Abstract
:1. Introduction
2. Experimental Methods
2.1. Synthesis of CNs-Grafted ACFs
2.2. Characterization Techniques
2.3. CO2 Adsorption
3. Results and Discussion
3.1. Characterization of Various ACF Samples
3.2. Adsorption Performance of Various ACF Samples
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Greenhouse Gases Emission. Available online: http://www.epa.gov.tw (accessed on 17 February 2014).
- Overview of Greenhouse Gases. Available online: http://www.epa.gov (accessed on 17 February 2014).
- Rubin, E.S.; Mantripragada, H.; Marks, A.; Versteeg, P.; Kitchin, J. The outlook for improved carbon capture technology. Prog. Energ. Combust. 2012, 38, 630–671. [Google Scholar] [CrossRef]
- Lee, Z.H.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renew. Sust. Energ. Rev. 2012, 16, 2599–2609. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Juang, R.S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. J. Taiwan Inst. Chem. Eng. 2017, 71, 214–234. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.J. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interface Sci. 2013, 389, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.L.; Yeh, A.C. Removal of CO2 greenhouse gas by ammonia scrubbing. Ind. Eng. Chem. Res. 1997, 36, 2490–2493. [Google Scholar] [CrossRef]
- Special Report on Carbon Dioxide Capture and Storage. Available online: http://www.ipcc.ch (accessed on 17 February 2014).
- Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.; Poston, J.A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279–284. [Google Scholar] [CrossRef]
- Jadhav, P.D.; Chatti, R.V.; Biniwale, R.B.; Labhsetwar, N.K.; Devotta, S.; Rayalu, S.S. Monoethanol amine modified zeolite 13× for CO2 adsorption at different temperatures. Energy Fuels 2007, 21, 3555–3559. [Google Scholar] [CrossRef]
- Gray, M.L.; Soong, Y.; Champagne, K.J.; Pennline, H.; Baltrus, J.P.; Stevens, R.W., Jr. Improved immobilized carbon dioxide capture sorbents. Fuel Process. Technol. 2005, 86, 1449–1455. [Google Scholar] [CrossRef]
- Su, F.; Lu, C.; Chen, W.; Bai, H.; Hwang, J.F. Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci. Total Environ. 2009, 407, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Pevida, C.; Drage, T.C.; Snape, C.E. Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture. Carbon 2008, 46, 1464–1474. [Google Scholar] [CrossRef]
- Sevilla, M.; Falco, C.; Titirici, M.M.; Fuertes, A.B. High-performance CO2 sorbents from algae. RSC Adv. 2012, 2, 12792–12797. [Google Scholar] [CrossRef]
- Pietrzak, R. XPS study and physicochemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel 2009, 88, 1871–1877. [Google Scholar] [CrossRef]
- Qian, H.; Greenhalgh, E.S.; Shaffer, M.S.P.; Bismarck, A. Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 2010, 20, 4751–4762. [Google Scholar] [CrossRef]
- Downs, W.B.; Baker, R.T.K. Novel carbon fiber-carbon filament structures. Carbon 1991, 29, 1173–1179. [Google Scholar] [CrossRef]
- Downs, W.B.; Baker, R.T.K. Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. J. Mater. Res. 1995, 10, 625–633. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Li, W.Z.; Wang, D.Z.; Ren, Z.F.; Chou, T.W. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037. [Google Scholar] [CrossRef]
- Qian, H.; Bismarck, A.; Greenhalgh, E.S.; Kalinka, G.; Shaffer, S.P. Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chem. Mater. 2008, 20, 1862–1869. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, J.; Yu, W.R.; Youk, J.H.; Lee, J. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface. Carbon 2013, 54, 258–267. [Google Scholar] [CrossRef]
- Greef, N.D.; Zhang, L.; Magrez, A.; Forró, L.; Locquet, J.P.; Verpoest, I.; Seo, J.W. Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diam. Relat. Mater. 2015, 51, 39–48. [Google Scholar] [CrossRef]
- Tzeng, S.S.; Hung, K.H.; Ko, T.H. Growth of carbon nanotubes on activated carbon fiber fabrics. Carbon 2006, 44, 859–865. [Google Scholar] [CrossRef]
- Kong, Y.; Qiu, T.; Qiu, J. Fabrication of novel micro–nano carbonaceous composites based on self-made hollow activated carbon fibers. Appl. Surf. Sci. 2013, 265, 352–357. [Google Scholar] [CrossRef]
- Suzuki, M. Adsorption Engineering; Elsevier Science: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Kim, K.J.; Yu, W.R.; Youk, J.H.; Lee, J. Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces. ACS Appl. Mater. Inter. 2012, 4, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Youk, J.H.; Lee, J.; Sul, I.H.; Yu, W.R. Low-temperature grafting of carbon nanotubes on carbon fibers using a bimetallic floating catalyst. Diam. Relat. Mater. 2016, 68, 118–126. [Google Scholar] [CrossRef]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Arami-Niya, A. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Appl. Surf. Sci. 2011, 257, 3936–3942. [Google Scholar] [CrossRef]
- Lee, M.S.; Park, S.J. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition. J. Solid State Chem. 2015, 226, 17–23. [Google Scholar] [CrossRef]
- Li, B.; Fan, K.; Ma, X.; Liu, Y.; Chen, T.; Cheng, Z.; Wang, X.; Jiang, J.; Liu, X. Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines. J. Colloid Interface Sci. 2016, 478, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Shamiri, A.; Aghamohammadi, N. Adsorption equilibrium of carbon dioxide on ammonia-modified activated carbon. Chem. Eng. Res. Des. 2015, 104, 42–52. [Google Scholar] [CrossRef]
- Hao, G.P.; Li, W.C.; Qian, D.; Lu, A.H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qiao, S.; Hu, X. Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. Sep. Purif. Technol. 2004, 34, 165–176. [Google Scholar] [CrossRef]
- Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef] [PubMed]
Sample | Atomic ratio (%) | N/C | O/C | ||||
---|---|---|---|---|---|---|---|
C1s | N1s | O1s | Fe2p | Co2p | |||
ACF | 89.37 | 2.43 | 8.20 | -- | -- | 0.0272 | 0.0918 |
CN1/ACF | 88.75 | 5.66 | 4.90 | 0.69 | -- | 0.0638 | 0.0552 |
CN2/ACF | 93.75 | 4.13 | 1.95 | 0.03 | 0.14 | 0.0441 | 0.0208 |
Binding Energy (eV) | Type | ACF | CN1/ACF | CN2/ACF |
---|---|---|---|---|
395.7 | Nitride-like species or aromatic N-imines | -- | 1.53 | 2.57 |
398.4 | Pyridine-type N | 23.13 | 23.21 | 36.29 |
400.1 | Pyrrolic or amine moieties (or pyrrole, pyridone) | 17.90 | 36.73 | 8.45 |
401.2 | Quaternary N | 22.49 | 8.36 | 21.20 |
402.4 | Pyridine-N oxides | 9.94 | 9.49 | 2.45 |
404.0 | Shake-up satellites | 2.10 | -- | 6.32 |
405.0 | NO2 | 24.45 | 20.68 | 22.72 |
Sample | SSA (m2/g) | Smi α (m2/g) | Sext β (m2/g) | Vtγ (cm3/g) | Vmiη (cm3/g) | Vmeϕ (cm3/g) | Vmaξ (cm3/g) | Mean Pore Size ζ (nm) |
---|---|---|---|---|---|---|---|---|
ACF | 886 | 639 | 247 | 0.4395 | 0.3076 | 0.0758 | 0.0561 | 1.984 |
CN1/ACF | 757 | 547 | 210 | 0.3951 | 0.2652 | 0.0748 | 0.0551 | 2.087 |
CN2/ACF | 709 | 478 | 231 | 0.3577 | 0.2312 | 0.0722 | 0.0543 | 2.019 |
Supporting Materials | Amine Type | Temp. (°C) | Concentration of CO2 | CO2 Adsorption (mmol/g) | Source |
---|---|---|---|---|---|
Granular activated carbons | NH3 (with pre-oxidation) | 30 | 1 atm | ~1.50 | [28] |
Silica-coated multi-walled CNTs (MWCNTs) | Polyethyleneimine | 25 | 1 bar | 1.41 | [29] |
Fluorinated graphene | Ethylenediamine | 0 | 1.1 bar | 1.16 | [30] |
MWCNTs | 3-Aminopropyl-triethoxysilane | 20 | 15% | 0.98 | [12] |
Granular activated carbons | NH3 | 30 | 1 atm | ~1.7 | [31] |
Carbon monolith | Lysine | 25 | 1 atm | 3.13 | [32] |
ACFs | — | 25 | 1 atm | 1.92 | This study |
ACFs | CN1 | 25 | 1 atm | 1.53 | This study |
ACFs | CN2 | 25 | 1 atm | 1.75 | This study |
Temp. (oC) | Freundlich | Langmuir | Toth | |||||||
---|---|---|---|---|---|---|---|---|---|---|
KF | n | r2 | qm | KL | r2 | qT | KT | t | r2 | |
25 | 0.0987 | 1.61 | 0.9997 | 3.39 | 0.0103 | 0.9957 | 9.86 | 0.0077 | 0.43 | 0.9982 |
40 | 0.0550 | 1.43 | 0.9999 | 3.34 | 0.0070 | 0.9973 | 6.30 | 0.0046 | 0.62 | 0.9954 |
55 | 0.0336 | 1.34 | 0.9999 | 2.95 | 0.0054 | 0.9985 | 3.76 | 0.0045 | 0.82 | 0.9968 |
Sample | Temperature (oC) | KF (mmol/g/kPa1/n) | n (-) | r2 (-) |
---|---|---|---|---|
ACF | 25 | 0.1051 | 1.59 | 0.9998 |
40 | 0.0689 | 1.48 | 0.9998 | |
55 | 0.0490 | 1.38 | 0.9998 | |
CN1/ACF | 25 | 0.0813 | 1.58 | 0.9998 |
40 | 0.0492 | 1.46 | 0.9998 | |
55 | 0.0315 | 1.33 | 0.9999 | |
CN2/ACF | 25 | 0.0987 | 1.61 | 0.9997 |
40 | 0.0550 | 1.43 | 0.9999 | |
55 | 0.0336 | 1.34 | 0.9999 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, Y.-C.; Hsu, W.-L.; Lin, S.-Y.; Juang, R.-S. Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes. Materials 2017, 10, 511. https://doi.org/10.3390/ma10050511
Chiang Y-C, Hsu W-L, Lin S-Y, Juang R-S. Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes. Materials. 2017; 10(5):511. https://doi.org/10.3390/ma10050511
Chicago/Turabian StyleChiang, Yu-Chun, Wei-Lien Hsu, Shih-Yu Lin, and Ruey-Shin Juang. 2017. "Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes" Materials 10, no. 5: 511. https://doi.org/10.3390/ma10050511
APA StyleChiang, Y. -C., Hsu, W. -L., Lin, S. -Y., & Juang, R. -S. (2017). Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes. Materials, 10(5), 511. https://doi.org/10.3390/ma10050511