2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of UHPLC Method
2.2. Osmolality Measurements and Activity Coefficient Determination
2.3. Viscosity Measurements
2.4. Surface Tension Measurements
2.5. Size Distribution of HPβCD Particles
2.6. Permeation Studies
2.6.1. Optimization of Permeation Studies
2.6.2. Determination of Flux and Apparent cac Values for HPβCD
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Quantitative Determination of HPβCD
4.3. Validation of the UHPLC-CAD Method
4.3.1. Linearity and Range
4.3.2. Repeatability
4.3.3. Accuracy (% Recovery)
4.3.4. Limit of Detection (LOD) and Limit of Quantification Limit (LOQ)
4.4. Determination of the Water Content
4.5. Osmolality Measurements (Cryoscopic Osmometry)
4.6. Viscosity Measurements
4.7. Surface Tension Measurements
4.8. Dynamic Light Scattering (DLS) Determinations
4.9. Permeation Studies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Messner, M.; Kurkov, S.V.; Brewster, M.E.; Jansook, P.; Loftsson, T. Self-assembly of cyclodextrin complexes: Aggregation of hydrocortisone/cyclodextrin complexes. Int. J. Pharm. 2011, 407, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Bonini, M.; Rossi, S.; Karlsson, G.; Almgren, M.; Lo Nostro, P.; Baglioni, P. Self-Assembly of β-Cyclodextrin in Water. Part 1: Cryo-TEM and Dynamic and Static Light Scattering. Langmuir 2006, 22, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- González-Gaitano, G.; Rodríguez, P.; Isasi, J.R.; Fuentes, M.; Tardajos, G.; Sánchez, M. The Aggregation of Cyclodextrins as Studied by Photon Correlation Spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 101–105. [Google Scholar] [CrossRef]
- Messner, M.; Kurkov, S.V.; Palazón, M.M.; Fernández, B.Á.; Brewster, M.E.; Loftsson, T. Self-assembly of cyclodextrin complexes: Effect of temperature, agitation and media composition on aggregation. Int. J. Pharm. 2011, 419, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Dodziuk, H. Molecules with Holes—Cyclodextrins. In Cyclodextrins and Their Complexes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 1–30. [Google Scholar]
- De Sousa, F.B.; Lima, A.C.; Denadai, A.M.; Anconi, C.P.; De Almeida, W.B.; Novato, W.T.; Dos Santos, H.F.; Drum, C.L.; Langer, R.; Sinisterra, R.D. Superstructure based on beta-CD self-assembly induced by a small guest molecule. Phys. Chem. Chem. Phys. 2012, 14, 1934–1944. [Google Scholar] [CrossRef] [PubMed]
- Mixcoha, E.; Campos-Terán, J.; Piñeiro, Á. Surface Adsorption and Bulk Aggregation of Cyclodextrins by Computational Molecular Dynamics Simulations as a Function of Temperature: α-CD vs β-CD. J. Phys. Chem. B 2014, 118, 6999–7011. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.W.; Nicolis, I.; Keller, N.; Dalbiez, J.P. Aggregation of cyclodextrins: An explanation of the abnormal solubility of β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 1992, 13, 139–143. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Zannou, E.A.; Streng, W.H.; Stella, V.J. Osmotic Properties of Sulfobutylether and Hydroxypropyl Cyclodextrins. Pharm. Res. 2001, 18, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Häusler, O.; Müller-Goymann, C.C. Properties and Structure of Aqueous Solutions of Hydroxypropyl-beta-Cyclodextrin. Starch Stärke 1993, 45, 183–187. [Google Scholar] [CrossRef]
- Messner, M.; Kurkov, S.V.; Flavià-Piera, R.; Brewster, M.E.; Loftsson, T. Self-assembly of cyclodextrins: The effect of the guest molecule. Int. J. Pharm. 2011, 408, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Loftsson, T. A New Approach for Quantitative Determination of gamma-Cyclodextrin in Aqueous Solutions: Application in Aggregate Determinations and Solubility in Hydrocortisone/gamma-Cyclodextrin Inclusion Complex. J. Pharm. Sci. 2015, 104, 3925–3933. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, K.; Sawada, M.; Nakagaki, M. Studies on Aqueous Solutions of Saccharides. I. Activity Coefficients of Monosaccharides in Aqueous Solutions at 25 °C. Bull. Chem. Soc. Jpn. 1983, 56, 1620–1623. [Google Scholar] [CrossRef]
- Miyajima, K.; Sawada, M.; Nakagaki, M. Studies on Aqueous Solutions of Saccharides. II. Viscosity B-Coefficients, Apparent Molar Volumes, and Activity Coefficients of D-Glucose, Maltose, and Maltotriose in Aqueous Solutions. Bull. Chem. Soc. Jpn. 1983, 56, 1954–1957. [Google Scholar] [CrossRef]
- Stigter, D. Interactions in aqueous solutions. II. Osmotic pressure and osmotic coefficient of sucrose and glucose solutions. J. Phys. Chem. 1960, 64, 118–124. [Google Scholar] [CrossRef]
- Miyawaki, O.; Saito, A.; Matsuo, T.; Nakamura, K. Activity and Activity Coefficient of Water in Aqueous Solutions and Their Relationships with Solution Structure Parameters. Biosci. Biotechnol. Biochem. 1997, 61, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Starzak, M.; Mathlouthi, M. Temperature dependence of water activity in aqueous solutions of sucrose. Food Chem. 2006, 96, 346–370. [Google Scholar] [CrossRef]
- Sá Couto, A.R.; Ryzhakov, A.; Loftsson, T. Self-Assembly of α-Cyclodextrin and β-Cyclodextrin: Identification and Development of Analytical Techniques. J. Pharm. Sci. 2018, 107, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Proniuk, S.; Blanchard, J. Influence of degree of substitution of cyclodextrins on their colligative properties in solution. J. Pharm. Sci. 2001, 90, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, K.; Mukai, T.; Nakagaki, M.; Otagiri, M.; Uekama, K. Activity coefficients od Dimethyl-beta-cyclodextrin in aqueous solutions. Bull. Chem. Soc. Jpn. 1986, 59, 643–644. [Google Scholar] [CrossRef]
- Motoyama, K.; Nagatomo, K.; Abd Elazim, S.O.; Hirayama, F.; Uekama, K.; Arima, H. Potential use of 2-hydroxypropyl-beta-cyclodextrin for preparation of orally disintegrating tablets containing DL-alpha-tocopheryl acetate, an oily drug. Chem. Pharm. Bull. 2009, 57, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T. Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Pharmazie 2012, 67, 363–370. [Google Scholar] [PubMed]
- Evrard, B.; Bertholet, P.; Gueders, M.; Flament, M.P.; Piel, G.; Delattre, L.; Gayot, A.; Leterme, P.; Foidart, J.M.; Cataldo, D. Cyclodextrins as a potential carrier in drug nebulization. J. Cont. Release 2004, 96, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loftsson, T.; Masson, M.; Sigurdsson, H.H. Cyclodextrins and drug permeability through semi-permeable cellophane membranes. Int. J. Pharm. 2002, 232, 35–43. [Google Scholar] [CrossRef]
- Ryzhakov, A.; Do Thi, T.; Stappaerts, J.; Bertoletti, L.; Kimpe, K.; Sá Couto, A.R.; Saokham, P.; Van den Mooter, G.; Augustijns, P.; Somsen, G.W. Self-Assembly of Cyclodextrins and Their Complexes in Aqueous Solutions. J. Pharm. Sci. 2016, 105, 2556–2569. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, L.; Walkenström, P.; Stading, M.; Hermansson, A.-M. Aggregation, viscosity measurements and direct observation of protein coated latex particles under shear. Food Hydrocoll. 2001, 15, 139–151. [Google Scholar] [CrossRef]
- Yoshida, A.; Yamamoto, M.; Irie, T.; Hirayama, F.; Uekama, K. Some pharmaceutical properties of 3-hydroxypropyl- and 2,3-dihydroxypropyl-beta-cyclodextrins and their solubilizing and stabilizing abilities. Chem. Pharm. Bull. 1989, 37, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Azarbayjani, A.F.; Lin, H.; Yap, C.W.; Chan, Y.W.; Chan, S.Y. Surface tension and wettability in transdermal delivery: A study on the in-vitro permeation of haloperidol with cyclodextrin across human epidermis. J. Pharm. Pharmacol. 2010, 62, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T.; Van Hooghten, R.; Van den Mooter, G. A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K2–K models. Int. J. Pharm. 2017, 521, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Garnero, C.; Longhi, M. Study of ascorbic acid interaction with hydroxypropyl-β-cyclodextrin and triethanolamine, separately and in combination. J. Coll. Interface Sci. 2007, 45, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Garnero, C.; Zoppi, A.; Genovese, D.; Longhi, M. Studies on trimethoprim:hydroxypropyl-β-cyclodextrin: aggregate and complex formation. Carbohydr. Res. 2010, 345, 2550–2556. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.S.; Zhao, N.; Össurardóttir, Í.B.; Thorsteinsson, T.; Loftsson, T. Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: Formation of aggregates and higher-order complexes. Int. J. Pharm. 2005, 297, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Masson, M.; Brewster, M.E. Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 2004, 93, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Jansook, P.; Kurkov, S.V.; Loftsson, T. Cyclodextrins as solubilizers: formation of complex aggregates. J. Pharm. Sci. 2010, 99, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Jansook, P.; Moya-Ortega, M.D.; Loftsson, T. Effect of self-aggregation of γ-cyclodextrin on drug solubilization. J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 229–236. [Google Scholar] [CrossRef]
- Stappaerts, J.; Do Thi, T.; Dominguez-Vega, E.; Somsen, G.W.; Van den Mooter, G.; Augustijns, P. The impact of guest compounds on cyclodextrin aggregation behavior: A series of structurally related parabens. Int. J. Pharm. 2017, 529, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Martin, A. Diffusion and Dissolution. In Physical Pharmacy, 4th ed.; Martin, A., Ed.; Lea & Febiger: Philadelphia, PA, USA, 1993; pp. 324–361. [Google Scholar]
- ICH, H.T.G. Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: https://www.ema.europa.eu/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 10 October 2018).
HPβCD Concentration (% w/v) | Intraday Precision | Accuracy | |
---|---|---|---|
(Average Peak Area ± SD) | %RSD | (Percentage Recovery ± SD) | |
0.5 | 17.41 ± 0.04 | 0.23 | 101.11 ± 0.45 |
2.5 | 18.17 ± 0.04 | 0.20 | 101.37 ± 0.20 |
5 | 17.41 ± 0.07 | 0.28 | 98.71 ± 0.27 |
MWCO (kDa) | HPβCD |
---|---|
cac% (w/v) | |
3.5–5 | 11.8 |
8–10 | 14.3 |
20 | 19.1 |
50 | ND * |
100 | ND * |
Analytical Method | General Outcome | Advantages | Disadvantages |
---|---|---|---|
Osmometry | Positive deviation from linearity (solute–solvent interactions favored). Presence of HPβCD aggregate particles cannot be excluded. | Simple to perform. Sample dilution not required. Fast. | Low accuracy at low CD concentrations. Inadequate method for HPβCD aggregate quantification. |
Viscometry | Exacerbated increase of viscosity deviating from linearity at CD conc. of 11% w/v (similar to sugars). Plausible method for detection/quantification of HPβCD aggregates in aqueous solutions. | Sample dilution not required. Fast. | This technique (plate method) can disassemble the aggregates by the mechanical forces involved. |
Tensiometry | Addition of HPβCD to water has only minor effect on surface tension. | None. | Inadequate method for detection and quantification of HPβCD aggregates. |
Dynamic Light Scattering | Uncertain results with available apparatus. Adequate method for detection of HPβCD aggregates. | Good approximation of aggregate size range. | Not suitable for aggregate quantification (i.e., to calculate the apparent cac value). |
Permeation studies | Most useful and reliable method to detect and quantify (i.e., determine their apparent cac values) in aqueous HPβCD solutions. | Most accurate method with most precise results. Least “invasive” method for the aggregates (donor phase is always unstirred and quite still during experiment). | Time-consuming. Extremely laboring. Indirect results. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sá Couto, A.R.; Ryzhakov, A.; Loftsson, T. 2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques. Materials 2018, 11, 1971. https://doi.org/10.3390/ma11101971
Sá Couto AR, Ryzhakov A, Loftsson T. 2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques. Materials. 2018; 11(10):1971. https://doi.org/10.3390/ma11101971
Chicago/Turabian StyleSá Couto, André Rodrigues, Alexey Ryzhakov, and Thorsteinn Loftsson. 2018. "2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques" Materials 11, no. 10: 1971. https://doi.org/10.3390/ma11101971
APA StyleSá Couto, A. R., Ryzhakov, A., & Loftsson, T. (2018). 2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques. Materials, 11(10), 1971. https://doi.org/10.3390/ma11101971