Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structure and Stability
3.2. Elastic Constants, Polycrystalline Moduli
3.3. Electronic Structures
3.4. Minimum Thermal Conductivity and Anisotropy
4. Conclusions
Author Contributions
Funding
Conflict of Interest
References
- Robson, J.D.; Paa-Rai, C. The interaction of grain refinement and ageing in magnesium-zinc-zirconium (ZK) alloys. Acta Mater. 2015, 95, 10–19. [Google Scholar] [CrossRef]
- Stjohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A 2005, 36, 1669–1679. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R. Comprehensive Characterisation of a Newly Developed Mg–Dy–Al–Zn–Zr Alloy Structure. Metals 2018, 8, 73. [Google Scholar] [CrossRef]
- Qian, M.; Stjohn, D.H.; Frost, M.T. Heterogeneous nuclei size in magnesium–zirconium alloys. Scr. Mater. 2004, 50, 1115–1119. [Google Scholar] [CrossRef]
- Qian, M.; Stjohn, D.H.; Frost, M.T. Zirconium alloying and grain refinement of magnesium alloys. Magnes. Technol. 2003, 2003, 209–214. [Google Scholar]
- Morozova, G.I.; Mukhina, I.Y. Nanostructural hardening of cast magnesium alloys of the Mg-Zn-Zr system. Met. Sci. Heat Treat. 2011, 53, 3–7. [Google Scholar] [CrossRef]
- Li, J.H.; Barrirero, J.; Sha, G.; Aboulfadl, H.; Mücklich, F.; Schumacher, P. Precipitation hardening of an Mg-5Zn-2Gd-0.4Zr (wt. %) alloy. Acta Mater. 2016, 108, 207–218. [Google Scholar] [CrossRef]
- Arroyave, R.; van de Walle, A.; Liu, Z.K. First-principles calculations of the Zn-Zr system. Acta Mater. 2006, 54, 473–482. [Google Scholar] [CrossRef]
- Wu, R.; Yan, Y.; Wang, G.; Murr, L.E.; Han, W.; Zhang, Z.; Zhang, M. Recent progress in magnesium-lithium alloys. Int. Mater. Rev. 2014, 60, 65–100. [Google Scholar] [CrossRef]
- Li, B.; Hou, L.; Wu, R.; Zhang, J.; Li, X.; Zhang, M.; Dong, A.; Sun, B. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. J. Alloys Compd. 2017, 7221, 772–777. [Google Scholar] [CrossRef]
- Yamasaki, M.; Kawamura, Y. Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase. Scr. Mater. 2009, 60, 264–267. [Google Scholar] [CrossRef]
- Yang, C.; Pan, F.; Chen, X.; Luo, N.; Han, B.; Zhou, T. Thermal conductivity and mechanical properties of Sm-containing Mg-Zn-Zr alloys. Mater. Sci. Technol. 2018, 34, 138–144. [Google Scholar] [CrossRef]
- Li, X.D.; Ma, H.T.; Dai, Z.H.; Qian, Y.C.; Hu, L.J.; Xie, Y.P. First-principles study of coherent interfaces of Laves-phase MgZn2 and stability of thin MgZn2 layers in Mg-Zn alloys. J. Alloys Compd. 2017, 696, 109–117. [Google Scholar] [CrossRef]
- Tsuru, T.; Yamaguchi, M.; Ebihara, K.; Itakura, M.; Shiihara, Y.; Matsuda, K. First-principles study of hydrogen segregation at the MgZn2 precipitate in Al-Mg-Zn alloys. Comput. Mater. Sci. 2018, 148, 301–306. [Google Scholar] [CrossRef]
- Qian, M.; Das, A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scr. Mater. 2006, 54, 881–886. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.Y.; Li, F.Z.; Zhou, Y.C. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 2010, 58, 4369–4377. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B Condens. Matter 1992, 46, 6131–6140. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter 1993, 46, 6671–6687. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J. Special points for Brillouin-zone integrations. Phys. Rev. B Condens. Matter 1976, 16, 1748–1749. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Abbasi-Pérez, D.; Luaña, V. Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar]
- Moruzzi, V.L.; Janak, J.F.; Schwarz, K. Calculated thermal properties of metals. Phys. Rev. B 1988, 37, 790–799. [Google Scholar] [CrossRef]
- Álvarez Blanco, M. Métodos cuánticos locales para la simulación de materiales iónicos. Fundamentos, algoritmos y aplicaciones. Ph.D. Thesis, Universidad de Oviedo, Asturias, Spain, July 1997. [Google Scholar]
- Mayer, B.; Anton, H.; Bott, E.; Methfessel, M.; Sticht, J.; Harris, J.; Schmidt, P.C. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 2003, 11, 23–32. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Hou, H.; Wen, Z.; Zhang, P.; Liang, J. Effect of anti-site point defects on the mechanical and thermodynamic properties of MgZn2, MgCu2 Laves phases: A first-principle study. J. Solid State Chem. 2018, 263, 18–23. [Google Scholar] [CrossRef]
- De, J.M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.; Gamst, A. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2015, 2, 150009. [Google Scholar] [Green Version]
- Mao, P.; Yu, B.; Liu, Z.; Wang, F.; Ju, Y. First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg-Zn-Ca-Cu alloy. J. Magnes. Alloys 2013, 1, 256–262. [Google Scholar] [CrossRef]
- Seidenkranz, T.; Hegenbarth, E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K. Phys. Status Solidi A 1976, 33, 205–210. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik; Teubner: Leipzig, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 2002, 65, 349–354. [Google Scholar] [CrossRef]
- Mohri, T.; Chen, Y.; Kohyama, M.; Ogata, S.; Saengdeejing, A.; Bhattacharya, S.K. Mechanical properties of Fe-rich Si alloy from Hamiltonian. NPJ Comput. Mater. 2017, 3, 10. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Shao, L.; Shi, T.T.; Zheng, J.; Wang, H.C.; Pan, X.Z.; Tang, B.Y. First-principles study of point defects in C14 MgZn2 Laves phase. J. Alloys Compd. 2016, 654, 475–481. [Google Scholar] [CrossRef]
- Tadano, T.; Tsuneyuki, S. Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles. Phys. Rev. Lett. 2018, 120, 105901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wang, H.; Chen, Y.B.; Yao, S.H.; Zhou, J. First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5. J. Appl. Phys. 2018, 123, 175104. [Google Scholar] [CrossRef]
- Poirier, P.J. Introduction to the Physics of the Earth’s Interior, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Anderson, O.L. A Simplified Method for Calculating the Debye Temperature from Elastic Constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
Species | Space Group | Lattice Parameters | ρ | B0 | F | |
---|---|---|---|---|---|---|
a | c | |||||
ZnZr | Pmm | 3.34 (3.34 a) | - | 7.00 | 107.11 | −5.07 |
Zn2Zr | Fdm | 7.39 (7.40 a) | - | 7.31 | 104.47 | −3.83 |
Zn2Zr3 | P42/mnm | 7.59 (7.63 a) | 6.83 (6.76 a) | 6.84 | 102.54 | −5.71 |
MgZn2 | P63/mmc | 5.23 (5.20 b) | 8.56 (8.54 b) | 5.17 | 63.69 | −1.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhao, Y.; Guo, H.; Lan, F.; Hou, H. Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles. Materials 2018, 11, 2010. https://doi.org/10.3390/ma11102010
Wang S, Zhao Y, Guo H, Lan F, Hou H. Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles. Materials. 2018; 11(10):2010. https://doi.org/10.3390/ma11102010
Chicago/Turabian StyleWang, Shuo, Yuhong Zhao, Huijun Guo, Feifei Lan, and Hua Hou. 2018. "Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles" Materials 11, no. 10: 2010. https://doi.org/10.3390/ma11102010
APA StyleWang, S., Zhao, Y., Guo, H., Lan, F., & Hou, H. (2018). Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles. Materials, 11(10), 2010. https://doi.org/10.3390/ma11102010