Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Visual Grading of the Sawn Timber
2.2. Bending Tests of the Sawn Timber
2.3. Bending Tests of the Sawn Timber
2.4. CLT Manufacturing Process
2.5. CLT Bending Tests
2.6. Characterization of the CLT Panels
2.7. Structural Performance
3. Results and Discussion
3.1. Mechanical Properties of Uruguayan Pine from Small-Diameter Logs
3.2. Relationship between the Structural Properties of the Layers and Those of the CLT Panels
3.3. Effect of Strength Class on the Structural Performance of CLT Floors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dangel, U. Turning Point in Timber Construction; Birkhäuser: Basel, Switzerland, 2016; ISBN 978-3035610253. [Google Scholar]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef] [Green Version]
- Hurmekoski, E.; Jonsson, R.; Nord, T. Context, drivers, and future potential for wood-frame multi-story construction in Europe. Technol. Forecast. Soc. Chang. 2015, 99, 181–196. [Google Scholar] [CrossRef]
- Safarik, D. Tall Buildings in Numbers. Tall timber: A global audit. CTBUH J. 2017, II, 47–49. [Google Scholar]
- Foster, R.M.; Reynolds, T.P.S.; Ramage, M.H. Proposal for Defining a Tall Timber Building. J. Struct. Eng. 2016, 142, 02516001. [Google Scholar] [CrossRef] [Green Version]
- Polastri, A.; Pozza, L. Proposal for a standardized design and modeling procedure of tall CLT buildings. Int. J. Qual. Res. 2016, 10, 607–624. [Google Scholar] [CrossRef]
- Izzi, M.; Casagrande, D.; Bezzi, S.; Pasca, D.; Follesa, M.; Tomasi, R. Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review. Eng. Struct. 2018, 170, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.; van de Kuilen, J.-W.G.; Popovski, M.; Berman, J.W.; Dolan, J.D.; Ricles, J.; Sause, R.; Blomgren, H.; Rammer, D.R. Cross Laminated Timber for seismic regions: Progress and challenges for research and implementation. J. Struct. Eng. 2016, 142, E2514001. [Google Scholar] [CrossRef]
- Izzi, M.; Polastri, A.; Fragiacomo, M. Modelling the mechanical behaviour of typical wall-to-floor connection systems for Cross-Laminated Timber structures. Eng. Struct. 2018, 162, 70–82. [Google Scholar] [CrossRef]
- Hossain, A.; Danzig, I.; Tannert, T. Cross-laminated timber shear connections with double-angled self-tapping screw assemblies. J. Struct. Eng. 2016, 142, 04016099. [Google Scholar] [CrossRef]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross laminated timber (CLT): Overview and development. Eur. J. Wood Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mazela, B. Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Drvna Ind. 2017, 68, pp. 359–367. [CrossRef]
- CEN, EN 338. Structural Timber. Strength Classes. 2016. Available online: https://standards.globalspec.com/std/10019471/en-338 (accessed on 28 November 2018).
- Fortune, P.; Quenneville, A.L. A feasibility study of New Zealand Radiata Pine crosslam. In Proceedings of the 1st Australian Conference on the Mechanics of Structures and Materials, London, UK, 2011; pp. 1–2. [Google Scholar]
- Pulgar, E.P.; Soto, P.G.; Flores, E.I.S.; Vavra, T.; Conde, J.T.; Parada, S.O. Mechanical Characterization and Seismic Behaviour of Cross Laminated Timber Panels Made of Chilean Radiata. Incorporating Sustainable Practice in Mechanics of Structures and Materials. In Proceedings of the WCTE 2016 World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016; pp. 4714–4721. [Google Scholar]
- Marko, G.; Bejo, L.; Takats, P. Cross-laminated timber made of Hungarian raw materials. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2016; Volume 123, p. 1. [Google Scholar] [CrossRef]
- Hindman, D.P.; Bouldin, J.C. Mechanical Properties of Southern Pine Cross-Laminated Timber. J. Mater. Civ. Eng. 2015, 27, 04014251. [Google Scholar] [CrossRef]
- Sikora, K.S.; McPolin, D.O.; Harte, A.M. Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Constr. Build. Mater. 2016, 116, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Okabe, M.; Yasumura, M.; Kobayashi, K.; Fujita, K. Prediction of bending stiffness and moment carrying capacity of sugi cross-laminated timber. J. Wood Sci. 2014, 60, 49–58. [Google Scholar] [CrossRef]
- Shahnewaz, I.; Tannert, T.; Shahria Alam, M.; Popovski, M. In-plane stiffness of Cross-Laminated Timber panels with openings. Struct. Eng. Int. 2017, 27, 217–223. [Google Scholar] [CrossRef]
- Shahnewaz, M.; Alam, S.; Tannert, T. In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls. Buildings 2018, 8, 100. [Google Scholar] [CrossRef]
- Brandner, R.; Bogensperger, T.; Schickhofer, G. In plane shear strength of cross laminated timber (CLT): Test configuration, quantification and influencing parameters. In Proceedings of the 46th CIB-W18 Meeting, Vancouver, BC, Canada, 26–29 August 2013. [Google Scholar]
- Bussoni, A.; Cabris, J. A financial evaluation of two contrasting silvicultural systems applicable to Pinus taeda grown in north-east Uruguay. South. For. 2010, 72, 163–171. [Google Scholar] [CrossRef]
- Dieste, A. Programa de Promoción de Exportaciones de Productos de Madera, Dirección Nacional de Industrias—Ministerio de Industrias, Energía y Minería, 2012. Montevideo, Uruguay. Available online: http://www.miem.gub.uy/consejos-sectoriales/madera/publicaciones (accessed on 28 November 2018).
- CEN, EN 16351. Timber Structures. Cross Laminated Timber. Requirements. 2015. Available online: https://standards.globalspec.com/std/9963660/en-16351 (accessed on 28 November 2018).
- CEN, EN 14080. Timber structures. Glued laminated timber and glued solid timber. Requirements. 2013. Available online: https://standards.globalspec.com/std/1660360/en-14080 (accessed on 28 November 2018).
- Unterwieser, H.; Schickhofer, G. Characteristic Values and Test Configurations of CLT with Focus on selected Properties. In Focus Solid Timber Solutions, Proceedings of the European Conference on Cross Laminated Timber (CLT), Bath, UK, 1–4 September 2014; Harris, R., Ringhofer, A., Schickhofer, G., Eds.; The University of Bath: Bath, UK, 2014; pp. 35–65. [Google Scholar]
- Brandner, R.; Tomasi, R.; Moosbrugger, T.; Serrano, E.; Distch, P. Properties, Testing and Design of Cross Laminated Timber. A State-Of-The-Art Report by COST Action FP1402/WG2. Germany, 2018. Available online: https://www.researchgate.net/profile/Philipp_Dietsch/publication/328214443_Properties_Testing_and_Design_of_Cross_Laminated_Timber/links/5bbeeca345851572315ed7b7/Properties-Testing-and-Design-of-Cross-Laminated-Timber.pdf (accessed on 28 November 2018).
- Popovski, M.; Ph, D.; Eng, P.; Gagnon, S. Analytical Procedures for Determining Stiffness of CLT Elements in Bending. Wood Des. Focus 2012, 22, 22–30. [Google Scholar]
- CEN, EN 1995-1-1. Eurocode 5: Design of Timber Structures. Part 1-1: General. Common Rules and Rules for Buildings. 2004. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1995.1.1.2004.pdf (accessed on 28 November 2018).
- Wallner-Novak, M.; Koppelhuber, J.; Pock, K. Cross-Laminated Timber Structural Design- Basic Design and Engineering Principles According to Eurocode. 2014. Available online: http://www.binderholz.com/fileadmin/PDF/Basisprodukte/Brettsperrholz_BBS/201411_proHolz_Cross-Laminated_Timber_Structural_Design.pdf (accessed on 28 November 2018).
- Kreuzinger, H. Platten, Scheiben und Schalen. Ein Berechnungsmodell fur gangige Statikprogramme (German). Bauen Mit Holz 1999, 1, 34–39. [Google Scholar]
- CEN, EN 384. Structural Timber. Determination of Characteristic Values of Mechanical Properties and Density. 2016. Available online: https://standards.globalspec.com/std/10019471/en-338 (accessed on 28 November 2018).
- CEN, EN 14358. Timber Structures. Calculation and Verification of Characteristic Values. 2016. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030286098 (accessed on 28 November 2018).
- Moya, L.; Domenech, L.; Cardoso, A.; Oneill, H.; Baño, V. Proposal of visual strength grading rules for Uruguayan pine timber. Eur. J. Wood Wood Prod. 2017, 75, 1017–1019. [Google Scholar] [CrossRef]
- Hermoso Prieto, E.; Mateo, R.; Íñiguez-González, G.; Montón, J.; Arriaga, F. Visual Grading and Structural Properties Assessment of Large Cross-Section Pinus radiata D. Don Timber. Bioresources 2016, 11, 5312–5321. [Google Scholar] [CrossRef]
- CEN, EN 408. Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties. 2010. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:38629,6106&cs=13B2CD6CED7B37A0ACC15792AE3FE9FC3 (accessed on 28 November 2018).
- Baño, V.; Arriaga, F.; Soilán, A.; Guaita, M. Prediction of bending load capacity of timber beams using a finite element method simulation of knots and grain deviation. Biosyst. Eng. 2011, 109, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Gong, M.; Chui, Y.H.; Mohammad, M. Measurement of rolling shear modulus and strength of cross laminated timber fabricated with black spruce. Constr. Build. Mater. 2014, 64, 379–386. [Google Scholar] [CrossRef]
- Toussaint, E.; Fournely, E.; Moutou Pitti, R.; Grédiac, M. Studying the mechanical behavior of notched wood beams using full-field measurements. Eng. Struct. 2016, 113, 277–286. [Google Scholar] [CrossRef]
- Ehrhart, T.; Brandner, R.; Schickhofer, G.; Frangi, A. Rolling Shear Properties of some European Timber Species with Focus on Cross Laminated Timber (CLT): Test Configuration and Parameter Study. In Proceedings of the International Network on Timber Engineering Research (INTER), Sibenik, Croatia, 24–27 August 2015. [Google Scholar]
- Kramer, A.; Barbosa, A.R.; Sinha, A. Viability of Hybrid Poplar in ANSI Approved Cross-Laminated Timber Applications. J. Mater. Civ. Eng. 2014, 26, 06014009. [Google Scholar] [CrossRef]
- Lara-Bocanegra, A.J.; Majano-Majano, A.; Crespo, J.; Guaita, M. Finger-jointed Eucalyptus globulus with 1C-PUR adhesive for high performance engineered laminated products. Constr. Build. Mater. 2017, 135, 529–537. [Google Scholar] [CrossRef]
- Piter, J.C.; Cotrina, A.D.; Sosa Zitto, M.A.; Stefani, P.M.; Torrán, E.A. Determination of characteristic strength and stiffness values in glued laminated beams of Argentinean Eucalyptus grandis according to European standards. Holz als Roh-und Werkstoff 2007, 65, 261–266. [Google Scholar] [CrossRef]
- CEN, EN 1991-1-1. Eurocode 1: Actions on Structures. Part 1-1: General Actions-Densities, Self-Weight, Imposed Loads for Buildings. 2002. Available online: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1991.1.1.2002.pdf (accessed on 28 November 2018).
Sample | CTH Sawn Timber | CLT Panels | ||||
---|---|---|---|---|---|---|
Number of specimens | n | 45 | 20 | |||
Cross-section | Height (h) | mm | 127 | 102 | ||
Width (b) | mm | 37 | 381 | |||
Moisture content (MC) | MC mean | % | 13.4 | 13.0 | ||
COV | % | 7 | 6 | |||
Bending Strength a | Mean Values | fm_mean | MPa | 19.8 | 21.2 | |
COV | % | 32 | 20 | |||
Characteristic Values | Sample | fmk,s_P | MPa | 9.9 | 14.2 | |
fmk,s_NP | MPa | 10.8 | - | |||
Population | fmk_P | MPa | 6.9 | 9.9 | ||
fmk_NP | MPa | 7.6 | - | |||
Modulus of Elasticity b | Mean Values Sample | Ē_12 | MPa | 7347 | 6383 | |
COV | % | 29 | 23 | |||
Characteristic Values Population | E0,mean,k | MPa | 6805 | 5913 | ||
Density b | Mean Values | ρ_12,mean | Kg/m3 | 440 | 429 | |
COV | % | 9 | 5 | |||
Characteristic Values | Sample | ρk,s_P | Kg/m3 | 370 | 388 | |
ρk,s_NP | Kg/m3 | 380 | - | |||
Population | ρk_P | Kg/m3 | 326 | 341 | ||
ρk_NP | Kg/m3 | 334 | - |
δ (%) 3-Layer CLT | δ (%) 5-Layer CLT | δ (%) 7-Layer CLT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Load | 2 kN/m2 | 3 kN/m2 | 4 kN/m2 | 5 kN/m2 | 2 kN/m2 | 3 kN/m2 | 4 kN/m2 | 5 kN/m2 | 2 kN/m2 | 3 kN/m2 | 4 kN/m2 | 5 kN/m2 | |
SC | |||||||||||||
CTH-C14 | 0–2 | 0–4 | 5–12 | 15–16 | 4–5 | 4–10 | 12–17 | 18–19 | 0–7 | 0–13 | 11–17 | 19–21 | |
CTH-C24 | 14–16 | 14–18 | 19–26 | 27–29 | 17–17 | 17–21 | 24–30 | 29–32 | 16–18 | 18–26 | 26–31 | 29–33 |
Imposed Loads (kN/m2) | 7-Layer CLT | 5-Layer CLT | 3-Layer CLT | ||||||
---|---|---|---|---|---|---|---|---|---|
CTH | C14 | C24 | CTH | C14 | C24 | CTH | C14 | C24 | |
2 | 6.5 D/V/B | 6.5 Vd | 7.5 V | 4.5 Vd | 5.0 Vd | 5.5 Vd | 3.0 Vd | 3.0 Vd | 3.5 Vd |
3 | 6.0 B | 6.5 Vd | 7.5 V | 4.5 D/V/B | 5.0 Vd | 5.5 Vd | 3.0 Vd | 3.0 Vd | 3.5 Vd |
4 | 5.5 B | 6.5 D/V | 7.5 D/V | 4.0 B | 5.0 D/V | 5.5 D/V | 3.0 D/B/V | 3.0 Vd | 3.5 Vd |
5 | 5.0 B | 6.0 D | 7.0 D | 4.0 B | 4.5 D | 5.5 D | 2.5 B | 3.0 D/V | 3.5 D/V |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baño, V.; Godoy, D.; Figueredo, D.; Vega, A. Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine. Materials 2018, 11, 2436. https://doi.org/10.3390/ma11122436
Baño V, Godoy D, Figueredo D, Vega A. Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine. Materials. 2018; 11(12):2436. https://doi.org/10.3390/ma11122436
Chicago/Turabian StyleBaño, Vanesa, Daniel Godoy, Diego Figueredo, and Abel Vega. 2018. "Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine" Materials 11, no. 12: 2436. https://doi.org/10.3390/ma11122436
APA StyleBaño, V., Godoy, D., Figueredo, D., & Vega, A. (2018). Characterization and Structural Performance in Bending of CLT Panels Made from Small-Diameter Logs of Loblolly/Slash Pine. Materials, 11(12), 2436. https://doi.org/10.3390/ma11122436