Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells
Abstract
:1. Introduction
2. Roles and Ideal Characteristics of HTM
3. Synthesis and Deposition of CuSCN HTM
4. Architectures Used for CuSCN-Based PSCs
4.1. n-i-p Architecture of CuSCN-Based PSCs
4.2. Inverted (p-i-n) Architecture of CuSCN-Based PSCs
5. Stability of CuSCN-Based PSCs
6. Recommendations and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Liu, X.; Li, J.; McKechnie, S. Interactions between molecules and perovskites in halide perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 175, 1–19. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S.F. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506. [Google Scholar] [CrossRef]
- Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef]
- Da, Y.; Xuan, Y.; Li, Q. Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 174, 206–213. [Google Scholar] [CrossRef]
- Salhi, B.; Wudil, Y.S.; Hossain, M.K.; Al-Ahmed, A.; Al-Sulaiman, F.A. Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 90, 210–222. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Cells, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, D.; Li, Z. Recent advances in the design of dopant-free hole transporting materials for highly efficient perovskite solar cells. Chin. Chem. Lett. 2018, 29, 219–231. [Google Scholar] [CrossRef]
- Hawash, Z.; Universitet, K.; Ono, L.K.; Qi, Y. Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Adva 2017, 5. [Google Scholar] [CrossRef]
- Galatopoulos, F.; Savva, A.; Papadas, I.T.; Choulis, S.A. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Mater. 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Uribe, J.; Ramirez, D.; Osorio-Guillen, J.; Osorio, J.; Jaramilo, F. CH3NH3CaI3 Perovskite: Synthesis, Characterization, and First-Principles Studies. J. Phys. Chem. 2016, 120, 16393–16398. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M. Organic hole-transporting materials for efficient perovskite solar cells. Mater. Today Energy 2018, 7, 208–220. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Cai, B.; Yu, Z.; Sun, L. Progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 2018, 27, 650–672. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Deng, L.-L.; Dai, S.-M.; Wang, X.; Tian, C.-B.; Zhan, X.-X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 19353–19359. [Google Scholar] [CrossRef]
- Sun, J.; Lu, J.; Li, B.; Jiang, L.; Chesman, A.S.R.; Scully, A.D.; Gengenbach, T.R.; Cheng, Y.B.; Jasieniak, J.J. Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy 2018, 49, 163–171. [Google Scholar] [CrossRef]
- Yang, Y.; Pham, N.D.; Yao, D.; Zhu, H.; Yarlagadda, P.; Wang, H. Inorganic p-type semiconductors and carbon materials based hole transport materials for perovskite solar cells. Chin. Chem. Lett. 2018, 29, 1242–1250. [Google Scholar] [CrossRef]
- Christians, J.A.; Fung, R.C.M.; Kamat, P.V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ye, S.; Rao, H.; Li, Y.; Liu, Z.; Xiao, L.; Chen, Z.; Bian, Z.; Huang, C. Room-Temperature and Solution-Processed Copper Iodide as Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale 2016, 8, 15954–15960. [Google Scholar] [CrossRef]
- Li, M.H.; Yum, J.H.; Moon, S.J.; Chen, P. Inorganic p-type semiconductors: Their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 2016, 9, 331. [Google Scholar] [CrossRef]
- Han, G.; Du, W.H.; An, B.L.; Bruno, A.; Leow, S.W.; Soci, C.; Zhang, S.; Mhaisalkar, S.G.; Mathews, N. Nitrogen doped cuprous oxide as low cost hole-transporting material for perovskite solar cells. Scr. Mater. 2018, 153, 104–108. [Google Scholar] [CrossRef]
- Chen, J.; Park, N.-G. Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. J. Phys. Chem. C 2018, 122, 14039–14063. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Kaspar, T.C.; Droubay, T.C.; Varga, T.; Bowden, M.E.; Exarhos, G.J. Electronic and Defect Structures of CuSCN. J. Phys. Chem. C 2010, 114, 9111–9117. [Google Scholar] [CrossRef]
- Cho, A.; Park, N. Impact of Interfacial Layers in Perovskite Solar Cells. ChemSusChem 2017, 10, 3687–3704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrusci, A.; Stranks, S.D.; Docampo, P.; Yip, H.; Jen, A.K.; Snaith, H.J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124–3128. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.; Chiang, Y.; Lee, M.; Peng, S.; Guo, T.; Chen, P.; Wen, T. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Jiang, Z.Q.; Liao, L.S. New advances in small molecule hole-transporting materials for perovskite solar cells. Chin. Chem. Lett. 2016, 27, 1293–1303. [Google Scholar] [CrossRef]
- Calió, L.; Kazim, S.; Grätzel, M.; Ahmad, S. Hole-Transport Materials for Perovskite Solar Cells. Angew. Chem.-Int. Ed. 2016, 55, 14522–14545. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, P.; Singh, P.; Rana, P.J.S.; Garg, A.; Kar, P. Hole-Transporting Materials for Perovskite-Sensitized Solar Cells. Energy Technol. 2016, 4, 891–938. [Google Scholar] [CrossRef]
- Bui, T.; Ulfa, M.; Maschietto, F.; Ottochian, A.; Nghiêm, M.; Cio, I.; Goubard, F.; Pauporté, T. Design of dendritic core carbazole-based hole transporting materials for e ffi cient and stable hybrid perovskite solar cells. Org. Electron. 2018, 60, 22–30. [Google Scholar] [CrossRef]
- Vivo, P.; Salunke, J.K.; Priimagi, A. Hole-Transporting Materials for Printable Perovskite Solar Cells. Materials 2017, 10, 1087. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, Z.; Zhang, Y.; Lai, J.; Li, J.; Gurzadyan, G.G.; Yang, X.; Sun, L. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly ( ethylenedioxythiophene ) as a Hole-Transporting Material. Sci. Total Environ. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Sun, L. Inorganic Hole-Transporting Materials for Perovskite Solar Cells. Small Methods 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Premalal, E.V.A.; Kannangara, Y.Y.; Ratnayake, S.P.; Nalin de Silva, K.M. Facile Synthesis of Colored and Conducting CuSCN Composite Coated with CuS Nanoparticles. Nanoscale Res. Lett. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ezealigo, B.N.; Nwanya, A.C.; Simo, A.; Bucher, R.; Osuji, R.U.; Maaza, M.; Reddy, M.V.; Ezema, F.I. A study on solution deposited CuSCN thin films: Structural, electrochemical, optical properties. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
- Pattanasattayavong, P.; Promarak, V.; Anthopoulos, T. Electronic Properties of Copper (I) Thiocyanate (CuSCN). Adv. Electron. Mater. 2017, 3, 1–32. [Google Scholar] [CrossRef]
- Ding, T.; Wang, N.; Wang, C.; Wu, X.; Liu, W.; Zhang, Q.; Fan, W.; Sun, X.W. Solution-processed inorganic copper(i) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes. RSC Adv. 2017, 7, 26322–26327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Guo, H.; Feng, Z.; Lin, L.; Zhou, J.; Lin, Z. Electrochimica Acta n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method. Electrochim. Acta 2010, 55, 4889–4894. [Google Scholar] [CrossRef]
- Petti, L.; Pattanasattayavong, P.; Lin, Y.H.; Münzenrieder, N.; Cantarella, G.; Yaacobi-Gross, N.; Yan, F.; Tröster, G.; Anthopoulos, T.D. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits. Appl. Phys. Lett. 2017, 110, 1–5. [Google Scholar] [CrossRef]
- Yang, I.S.; Sohn, M.R.; Sung, S.D.; Kim, Y.J.; Yoo, Y.J.; Kim, J.; Lee, W.I. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 2017, 32, 414–421. [Google Scholar] [CrossRef]
- Bakr, Z.H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T.M.; Jose, R. Advances in hole transport materials engineering for stable and e ffi cient perovskite solar cells. Nano Energy 2017, 34, 271–305. [Google Scholar] [CrossRef]
- Madhavan, V.E.; Zimmermann, I.; Roldán-Carmona, C.; Grancini, G.; Buffiere, M.; Belaidi, A.; Nazeeruddin, M.K. Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1112–1117. [Google Scholar] [CrossRef]
- Hatch, S.M.; Briscoe, J.; Dunn, S. Improved CuSCN–ZnO diode performance with spray deposited CuSCN. Thin Solid Films 2013, 531, 404–407. [Google Scholar] [CrossRef]
- Xiong, Q.; Tian, H.; Zhang, J.; Han, L.; Lu, C.; Shen, B.; Zhang, Y.; Zheng, Y.; Lu, C.; Zeng, Z.; et al. CuSCN modified PEDOT:PSS to improve the efficiency of low temperature processed perovskite solar cells. Org. Electron. 2018, 61, 151–156. [Google Scholar] [CrossRef]
- Chaudhary, N.; Chaudhary, R.; Kesari, J.P.; Patra, A. An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells. Opt. Mater. 2017, 69, 367–371. [Google Scholar] [CrossRef]
- Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M.K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Sepalage, G.A.; Meyer, S.; Pascoe, A.R.; Scully, A.D.; Bach, U.; Cheng, Y.B.; Spiccia, L. A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells. Nano Energy 2017, 32, 310–319. [Google Scholar] [CrossRef]
- Qiu, L.; Ono, L.K.; Qi, Y. Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Mater. Today Energy 2018, 7, 169–189. [Google Scholar] [CrossRef]
- Ramírez, D.; Riveros, G.; Álvarez, K.; González, B.; Pereyra, C.J.; Dalchiele, E.A.; Marotti, R.E.; Ariosa, D.; Martín, F.; Ramos-barrado, J.R. Electrochemical synthesis of CuSCN nanostructures, tuning the morphological and structural characteristics: From nanorods to nanostructured layers. Mater. Sci. Semicond. Process. 2017, 68, 226–237. [Google Scholar] [CrossRef]
- Shlenskaya, N.N.; Tutantsev, A.S.; Belich, N.A.; Goodilin, E.A.; Grätzel, M.; Tarasov, A.B. Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells. Mendeleev Commun. 2018, 28, 378–380. [Google Scholar] [CrossRef]
- Murugadoss, G.; Thangamuthu, R.; Senthil Kumar, S.M. Fabrication of CH3NH3PbI3 perovskite-based solar cells: Developing various new solvents for CuSCN hole transport material. Sol. Energy Mater. Sol. Cells 2017, 164, 56–62. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Hu, Z.; Qin, L.; Sun, X.; Huang, Y. In situ decoration of CuSCN nanorod arrays with carbon quantum dots for highly ef fi cient photoelectrochemical performance. Carbon 2017, 125, 344–351. [Google Scholar] [CrossRef]
- Wu, W.; Cui, S.; Yang, C.; Hu, G.; Wu, H. Electrochemistry Communications Electrochemically superfilling of n-type ZnO nanorod arrays with p-type CuSCN semiconductor. Electrochem. Commun. 2009, 11, 1736–1739. [Google Scholar] [CrossRef]
- Chappaz-Gillot, C.; Salazar, R.; Berson, S.; Ivanova, V. Insights into CuSCN nanowire electrodeposition on flexible substrates. Electrochim. Acta 2013, 110, 375–381. [Google Scholar] [CrossRef]
- Lv, Y.; Guo, Y.; Zhang, H.; Zhou, X.; Chen, H. Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar cell using commercial available CuSCN and carbon. Sol. Energy 2018, 173, 7–16. [Google Scholar] [CrossRef]
- Karuppuchamy, S.; Murugadoss, G.; Ramachandran, K.; Saxena, V.; Thangamuthu, R. Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 8847–8853. [Google Scholar] [CrossRef]
- Zhao, K.; Munir, R.; Yan, B.; Yang, Y.; Kim, T.; Amassian, A. Solution-processed inorganic copper(i) thiocyanate (CuSCN) hole transporting layers for efficient p-i-n perovskite solar cells. J. Mater. Chem. A 2015, 3, 20554–20559. [Google Scholar] [CrossRef]
- Chowdhury, T.H.; Akhtaruzzaman, M.; Kayesh, M.E.; Kaneko, R.; Noda, T.; Lee, J.J.; Islam, A. Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability. Sol. Energy 2018, 171, 652–657. [Google Scholar] [CrossRef]
- Wijeyasinghe, N.; Regoutz, A.; Eisner, F.; Du, T.; Tsetseris, L.; Lin, Y.H.; Faber, H.; Pattanasattayavong, P.; Li, J.; Yan, F.; et al. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Adv. Funct. Mater. 2017, 27, 1–13. [Google Scholar] [CrossRef]
- Song, Z.; Phillips, A.B.; Heben, M.J.; Song, Z.; Watthage, S.C.; Phillips, A.B.; Heben, M.J.; Song, Z.; Watthage, S.C.; Phillips, A.B. Pathways toward high-performance perovskite solar cells: Review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 2016, 6, 022001. [Google Scholar] [CrossRef]
- Ito, S.; Tanaka, S.; Vahlman, H.; Nishino, H.; Manabe, K.; Lund, P. Carbon-Double-Bond-Free Printed Solar Cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural Control and Photoaging Effects. ChemPhysChem 2014, 15, 1194–1200. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, G.; Liao, L.; Liu, D.; Zhou, G.; Xu, C.; Yang, X.; Wu, R.; Song, Q. Enhancing the open circuit voltage of PEDOT:PSS-PC61BM based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing PC61 BM. Org. Electron. 2018, 59, 260–265. [Google Scholar] [CrossRef]
- Han, J.; Tu, Y.; Liu, Z.; Liu, X.; Ye, H.; Tang, Z.; Shi, T.; Liao, G. Efficient and stable inverted planar perovskite solar cells using dopant-free CuPc as hole transport layer. Electrochim. Acta 2018, 273, 273–281. [Google Scholar] [CrossRef]
- Guo, H.; Huang, X.; Pu, B.; Yang, J.; Chen, H.; Zhou, Y.; Yang, J.; Li, Y.; Wang, Z.; Niu, X. Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT:PSS as hole transporting layer. RSC Adv. 2017, 7, 50410–50419. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Murillo, J.; Fernandez-delgado, O.; Echegoyen, L. Progress in fullerene-based hybrid perovskite solar cells. J. Mater. Chem. C 2018, 6, 2635–2651. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, Z.; Cai, Y.; Zhou, Y.; Liu, H.; Lu, X.; Gao, X.; Shui, L.; Wu, S.; Liu, J. Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. J. Power Sources 2018, 396, 49–56. [Google Scholar] [CrossRef]
- Chavhan, S.; Miguel, O.; Grande, H.J.; Gonzalez-Pedro, V.; Sánchez, R.S.; Barea, E.M.; Mora-Seró, I.; Tena-Zaera, R. Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A 2014, 2, 12754–12760. [Google Scholar] [CrossRef] [Green Version]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef] [Green Version]
- Baranwal, A.K.; Kanda, H.; Shibayama, N.; Ito, S. Fabrication of fully non-vacuum processed perovskite solar cells using inorganic CuSCN hole-transporting material and carbon- back contact. Sustain. Energy Fuels 2018. [Google Scholar] [CrossRef]
- Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett. 2015, 15, 3723–3728. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Dall’Agnese, C.; Wang, X.-F.; Chen, G.; Li, M.-Z.; Song, J.-X.; Wei, Y.-J.; Miyasaka, T. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. J. Photochem. Photobiol. A Chem. 2018, 357, 36–40. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Z.; Lai, J.; Song, X.; Yang, X.; Hagfeldt, A.; Sun, L. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. J. Mater. Chem. A 2018, 6, 21435–21444. [Google Scholar] [CrossRef]
- Jung, M.; Kim, Y.C.; Jeon, N.J.; Yang, W.S.; Seo, J.; Noh, J.H.; Il Seok, S. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. ChemSusChem 2016, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Chen, J.; Park, N. Improvement of e ffi ciency and stability of CuSCN-based inverted perovskite solar cells by post-treatment with potassium thiocyanate. J. Solid State Chem. 2019, 269, 367–374. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Il Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Park, S.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Shin, H.W.; Ahn, T.K.; Noh, J.H.; Yoon, S.C.; et al. Il Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013–4019. [Google Scholar] [CrossRef]
- Duong, T.; Peng, J.; Walter, D.; Xiang, J.; Shen, H.; Chugh, D.; Mark, N.; Zhong, D.; Li, J.; Weber, K.J.; et al. Perovskite Solar Cells Employing Copper Phthalocyanine Hole Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Lett. 2018, 3, 2441–2448. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv. Mater. 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Cai, X.; Yang, D.; Song, D.; Wang, J.; Jiang, J.; Ma, A.; Lv, S.; Hu, M.Z.; Ni, C. Recent progress in stabilizing hybrid perovskites for solar cell applications. J. Power Sources 2017, 355, 98–133. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Z.; Huang, X.; Shi, S.; Li, Y. Synergetic effects of acid treatment and localized surface plasmon resonance in PEDOT:PSS layers by doping HAuCl4 for efficient polymer solar cells. Org. Electron. 2018, 62, 121–132. [Google Scholar] [CrossRef]
- Lee, J.J.; Lee, S.H.; Kim, F.S.; Choi, H.H.; Kim, J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Org. Electron. 2015, 26, 191–199. [Google Scholar] [CrossRef]
- Meyer, E.; Mutukwa, D.; Zingwe, N.; Taziwa, R. Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties asWell as Their Viability to Replace Lead Halide Perovskites. Metals 2018, 3, 667. [Google Scholar] [CrossRef]
Solvent Mixture | Sample Codes | JSC (mAcm−2) | VOC (V) | FF (%) | PCE (%) |
---|---|---|---|---|---|
pristine dipropyl sulfide | S1 | 18.76 | 0.92 | 56.0 | 9.79 |
dipropyl sulfide and chlorobenzene (1:1) | S2 | 18.93 | 0.95 | 49.0 | 8.97 |
isopropanol and methylammonium iodide (MAI) (10 mg/mL) | S3 | 18.31 | 0.84 | 55.0 | 8.53 |
isopropanol and MAI ((1:2) +10 mg/mL) | S4 | 19.42 | 0.92 | 56.0 | 10.07 |
Starting Material | Solvent Used | Duration | Temp | Additives | Deposition | Thickness (nm) | Ref. |
---|---|---|---|---|---|---|---|
CuSO4, KSCN | DI water | RT | EDTA | Electrochemical | 70–90 | [54] | |
CuSO4, KSCN | DI water | RT | DEA | Electrochemical | [55] | ||
CuSO4, KSCN | DI water | RT | TEA, EDTA, CDTA, NTA | Electrochemical | 80 | [56] | |
CuSCN | Dipropyl sulfide | 4 h | RT | Spin-coating | 300 | [57] | |
CuSCN | Dipropyl sulfide | Overnight | RT | Doctor-blading | ~400 | [58] | |
CuSCN | Dipropyl sulfide | 5 h | RT | Spin-coating | 13 | [59] | |
CuSCN | Dipropyl sulfide | Overnight | RT | Spin-coating Doctor-blading | ~30 ~500 | [44] | |
CuSCN | DMSO | 2 h | RT | Spin-coating | [47] | ||
CuSCN | Dipropyl sulfide; Dipropyl sulfide + Chlorobenzene; Isopropanol + MAI; Dipropyl sulfide + isopropanol + MAI | Overnight | RT | Doctor-blading | 450 | [53] | |
CuSCN | Diethyl sulfide | RT | Spin-coating | 10–40 | [60] | ||
CuSCN | Diethyl sulfide, Ammonia | 1 h | 50 °C | Spin-coating | 3–5 | [61] |
Annealing Temp. (°C) | Jsc (mAcm−2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
90 | 13.04 | 0.49 | 49.0 | 3.1 |
100 | 14.27 | 0.67 | 48.1 | 4.5 |
110 | 14.4 | 0.73 | 61.7 | 6.4 |
120 | 11.1 | 0.45 | 53.8 | 2.7 |
Device | Jsc (mAcm−2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
Device A | 21.9 | 1.00 | 75.8 | 16.6 |
Device B | 21.4 | 0.92 | 68.1 | 13.4 |
Device Architecture | Device Type | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | Year | Reference |
---|---|---|---|---|---|---|---|
FTO/compact TiO2/mesoporousTiO2/CsFAMAPbI3−xBrx/CuSCN/Al2O3/rGO/Au | M | 23.39 | 1.10 | 76.1 | 20.39 | 2017 | [70] |
FTO/blocking TiO2/mesoporous TiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au | M | 23.1 | 1.04 | 75.3 | 18.0 | 2016 | [75] |
FTO/compact TiO2/mesoporousTiO2/CH3NH3PbI3/CuSCN/Au | M | 23.10 | 1.01 | 73.1 | 17.10 | 2017 | [42] |
ITO/CuSCN/MAPbI3−xClx/PC61BM/PEI/Ag | IP | 20.76 | 1.10 | 73.0 | 16.66 | 2018 | [74] |
ITO/CuSCN/CuI/MAPbI3−xClx/PC61BM/PEI/Ag | IP | 22.33 | 1.11 | 76.0 | 18.76 | 2018 | [74] |
FTO/compact TiO2/mesoporousTiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au | M | 21.80 | 1.10 | 69.2 | 16.6 | 2016 | [44] |
ITO/CuSCN/CH3NH3PbI3/C60/BCP/Ag | IP | 21.9 | 1.00 | 75.8 | 15.6 | 2015 | [72] |
ITO/CuSCN/MAPbI3/PCBM/BCP/Ag | IP | 19.20 | 1.01 | 77.0 | 14.90 | 2019 | [76] |
ITO/rGO/CuSCN/CH3NH3PbI3/PCBM/BCP/Ag | IP | 18.21 | 1.03 | 76.1 | 14.28 | 2018 | [60] |
FTO/dense-TiO2/mesoporous TiO2/MAPbI3/CuSCN/Carbon | M | 18.90 | 0.96 | 68.0 | 12.41 | 2018 | [71] |
F:SnO2/TiO2/CH3NH3PbI3/CuSCN/Au | M | 19.7 | 1.02 | 62.0 | 12.4 | 2014 | [48] |
ITO/CuSCN/CH3NH3PbI3/LiF/Ag | IP | 15.76 | 1.06 | 63.2 | 10.8 | 2015 | [59] |
FTO/CuSCN-PEDOT:PSS/CH3NH3PbI3/Ag | IP | 17.6 | 0.86 | 71.7 | 10.09 | 2018 | [46] |
FTO/blocking TiO2/mesoporous TiO2/MAPbI3/CuSCN/Au | M | 16.82 | 0.89 | 61.4 | 9.20 | 2018 | [58] |
FTO/blocking TiO2/mesoporous TiO2/CH3NH3PbI3/CuSCN | M | 19.15 | 0.93 | 56.0 | 10.04 | 2017 | [53] |
FTO/compact TiO2/CH3NH3PbI3/CuSCN/Graphite | P | 19.3 | 0.84 | 59.6 | 9.6 | 2017 | [49] |
FTO/TiO2/CH3NH3PbI3−xClx/CuSCN/Au | P | 18.53 | 0.73 | 61.7 | 6.4 | 2014 | [69] |
FTO/dense-TiO2/nanocrystalline TiO2/CH3NH3PbI3/CuSCN/u | P | 14.5 | 0.63 | 53.0 | 4.85 | 2014 | [63] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matebese, F.; Taziwa, R.; Mutukwa, D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials 2018, 11, 2592. https://doi.org/10.3390/ma11122592
Matebese F, Taziwa R, Mutukwa D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials. 2018; 11(12):2592. https://doi.org/10.3390/ma11122592
Chicago/Turabian StyleMatebese, Funeka, Raymond Taziwa, and Dorcas Mutukwa. 2018. "Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells" Materials 11, no. 12: 2592. https://doi.org/10.3390/ma11122592
APA StyleMatebese, F., Taziwa, R., & Mutukwa, D. (2018). Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials, 11(12), 2592. https://doi.org/10.3390/ma11122592