Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of the Digital Sandstone Samples
2.2. Numerical Determination of Effective Rock Properties
2.3. Choice of Representative Sub-Cubes
2.4. Dissolution of Calcite Cementation
3. Results
3.1. Evaluation of the Representative Sub-Cubes
3.2. Effect of Spatial Calcite Distribution on Elastic Rock Properties
3.3. Impact of Calcite Cement Modulus on Effective Elastic Rock Properties
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Analytical Methods to Calculate Effective Elastic Properties
Appendix A.1. Voigt and Reuss Bounds
Appendix A.2. Mori-Tanaka Scheme
Appendix A.3. Self-Consistent Scheme
References
- Meller, C.; Kohl, T. The significance of hydrothermal alteration zones for the mechanical behavior of a geothermal reservoir. Geotherm. Energy 2014, 2, 1–21. [Google Scholar] [CrossRef]
- Heinicke, J.; Fischer, T.; Gaupp, R.; Götze, J.; Koch, U.; Konietzky, H.; Stanek, K. Hydrothermal alteration as a trigger mechanism for earthquake swarms: The Vogtland/NW Bohemia region as a case study. Geophys. J. Int. 2009, 178, 1–13. [Google Scholar] [CrossRef]
- Li, Q.; Lim, Y.M.; Flores, K.M.; Kranjc, K.; Jun, Y.S. Chemical reactions of portland cement with aqueous CO2 and their impacts on cement’s mechanical properties under geologic CO2 sequestration conditions. Environ. Sci. Technol. 2015, 49, 6335–6343. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Lee, H.; Chae, G.T.; Kim, T.; Kim, J.C. Alteration processes of cement induced by CO2-saturated water and its effect on physical properties: Experimental and geochemical modeling study. Chem. Erde Geochem. 2016, 76, 597–604. [Google Scholar] [CrossRef]
- Bemer, E.; Nguyen, M.T.; Dautriat, J.; Adelinet, M.; Fleury, M.; Youssef, S. Impact of chemical alteration on the poromechanical properties of carbonate rocks. Geophys. Prospect. 2016, 64, 810–827. [Google Scholar] [CrossRef]
- Lamy-Chappuis, B.; Angus, D.; Fisher, Q.J.; Yardley, B.W.D. The effect of CO2-enriched brine injection on the mechanical properties of calcite-bearing sandstone. Int. J. Greenh. Gas Control 2016, 52, 84–95. [Google Scholar] [CrossRef]
- Hofmann, H.; Blöcher, G.; Börsing, N.; Maronde, N.; Pastrik, N.; Zimmermann, G. Potential for enhanced geothermal systems in low permeability limestones - stimulation strategies for the Western Malm karst (Bavaria). Geothermics 2014, 51, 351–367. [Google Scholar] [CrossRef]
- Blöcher, G.; Reinsch, T.; Henninges, J.; Milsch, H.; Regenspurg, S.; Kummerow, J.; Francke, H.; Kranz, S.; Saadat, A.; Zimmermann, G.; et al. Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics 2016, 63, 27–43. [Google Scholar] [CrossRef]
- Jacquey, A.B.; Cacace, M.; Blöcher, G.; Watanabe, N.; Huenges, E.; Scheck-Wenderoth, M. Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the Groß Schönebeck reservoir. Tectonophysics 2016, 684, 119–130. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, X.; Guo, J.; Shi, X.; Qi, Y. Enhanced oil recovery from fractured carbonate reservoir using membrane technology. J. Pet. Sci. Eng. 2015, 135, 10–15. [Google Scholar] [CrossRef]
- Hoteit, H.; Chawathe, A. Making field-scale chemical EOR simulations a practical reality using dynamic gridding. In Proceedings of the Spe EOR Conference at Oil and Gas West Asia, Muscat, Oman, 31 March–2 April 2014; pp. 1–18. [Google Scholar]
- Alexander, W.; Reijonen, H.; McKinley, I. Natural analogues: Studies of geological processes relevant to radioactive waste disposal in deep geological repositories. Swiss J. Geosci. 2015, 108, 75–100. [Google Scholar] [CrossRef]
- Fall, M.; Nasir, O.; Nguyen, T.S. A coupled hydro-mechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories. Eng. Geol. 2014, 176, 24–44. [Google Scholar] [CrossRef]
- Otto, C.; Kempka, T. Prediction of steam jacket dynamics and water balances in underground coal gasification. Energies 2017, 10, 739. [Google Scholar] [CrossRef]
- Otto, C.; Kempka, T.; Kapusta, K.; Stańczyk, K. Fault reactivation can generate hydraulic short circuits in underground coal gasification—New insights from regional-scale thermo-mechanical 3D modeling. Minerals 2016, 6, 101. [Google Scholar] [CrossRef]
- Otto, C.; Kempka, T. Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes. Energies 2015, 8, 5800–5827. [Google Scholar] [CrossRef]
- De Lucia, M.; Kempka, T.; Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems. Geosci. Model Dev. 2015, 8, 279–294. [Google Scholar] [CrossRef]
- Klein, E.; De Lucia, M.; Kempka, T.; Kühn, M. Evaluation of long-term mineral trapping at the Ketzin pilot site for CO2 storage: An integrative approach using geochemical modelling and reservoir simulation. Int. J. Greenh. Gas Control 2013, 19, 720–730. [Google Scholar] [CrossRef]
- Hangx, S.; Bakker, E.; Bertier, P.; Nover, G.; Busch, A. Chemical-mechanical coupling observed for depleted oil reservoirs subjected to long-term CO2-exposure—A case study of the Werkendam natural CO2 analogue field. Earth Planet. Sci. Lett. 2015, 428, 230–242. [Google Scholar] [CrossRef]
- Vialle, S.; Vanorio, T. Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water. Geophys. Res. Lett. 2011, 38, L01302. [Google Scholar] [CrossRef]
- Voigt, W. Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 1889, 274, 573–587. (In German) [Google Scholar] [CrossRef]
- Reuss, A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätitsbedingung für Einkristalle. Z. Angew. Math. Mech. 1929, 9, 49–58. (In German) [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Solids 1962, 11, 127–140. [Google Scholar] [CrossRef]
- Dvorkin, J.; Nur, A. Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics 1996, 61, 890–893. [Google Scholar] [CrossRef]
- Hertz, H. Über die Berührung fester elastischer Körper. J. Die Reine Angew. Math. 1881, 92, 156–171. (In German) [Google Scholar]
- Mindlin, R. Compliance of elastic bodies in contact. J. Appl. Mech. 1949, 16, 259–268. [Google Scholar]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521861366. [Google Scholar]
- Maghous, S.; Consoli, N.; Fonini, A.; Pasa Dutra, V. A theoretical-experimental approach to elastic and strength properties of artificially cemented sand. Comput. Geotech. 2014, 62, 40–50. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Zhu, Q.Z.; Xu, W.Y.; Dai, F.; Shao, J.F. A unified micromechanics-based damage model for instantaneous and time-dependent behaviors of brittle rocks. Int. J. Rock Mech. Min. Sci. 2016, 84, 187–196. [Google Scholar] [CrossRef]
- Arns, C.; Knackstedt, M.; Pinczewski, W.; Garboczi, E. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics 2002, 67, 1396–1405. [Google Scholar] [CrossRef]
- Nicolás-López, R.; Valdiviezo-Mijangos, O.C. Rock physics templates for integrated analysis of shales considering their mineralogy, organic matter and pore fluids. J. Pet. Sci. Eng. 2016, 137, 33–41. [Google Scholar] [CrossRef]
- Eshelby, J. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Math. Phys. Eng. Sci. 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Withers, P.; Stobb, W.; Pedersen, O. The application of the Eshelby method of internal stress determination to short fibre metal matrix composites. Acta Metall. 1989, 37, 3061–3084. [Google Scholar] [CrossRef]
- Hill, R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 1965, 13, 213–222. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Giraud, A.; Huynh, Q.V.; Hoxha, D.; Kondo, D. Application of results on Eshelby tensor to the determination of effective poroelastic properties of anisotropic rocks-like composites. Int. J. Solids Struct. 2007, 44, 3756–3772. [Google Scholar] [CrossRef]
- Parsaee, A.; Shokrieh, M.M.; Mondali, M. A micro-macro homogenization scheme for elastic composites containing high volume fraction multi-shape inclusions. Comput. Mater. Sci. 2016, 121, 217–224. [Google Scholar] [CrossRef]
- Klusemann, B.; Svendsen, B. Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks. Tech. Mech. 2010, 30, 374–386. [Google Scholar]
- Sherzer, G.; Gao, P.; Schlangen, E.; Ye, G.; Gal, E. Upscaling cement paste microstructure to obtain the fracture, shear, and elastic concrete mechanical LDPM parameters. Materials 2017, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Wang, Q.; Zhu, H. Effective properties of composites with periodic random packing of ellipsoids. Materials 2017, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Pettermann, H.E.; Huber, C.O.; Luxner, M.H.; Nogales, S.; Böhm, H.J. An incremental Mori-Tanaka homogenization scheme for finite: Strain thermoelastoplasticity of MMCs. Materials 2010, 3, 434–451. [Google Scholar] [CrossRef]
- Wetzel, M.; Kempka, T.; Kühn, M. Predicting macroscopic elastic rock properties requires detailed information on microstructure. Energy Procedia 2017, 125, 561–570. [Google Scholar] [CrossRef]
- Suvorov, A.; Selvadurai, A. Effective medium methods and a computational approach for estimating geomaterial properties of porous materials with randomly oriented ellipsoidal pores. Comput. Geotech. 2011, 38, 721–730. [Google Scholar] [CrossRef]
- Tsesarsky, M.; Hazan, M.; Gal, E. Estimating the elastic moduli and isotropy of block inmatrix (bim) rocks by computational homogenization. Eng. Geol. 2016, 200, 58–65. [Google Scholar] [CrossRef]
- Sain, R. Numerical Simulation of Pore-Scale Heterogeneity and Its Effects on Elastic, Electrical and Transport Properties. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2010. [Google Scholar]
- Dvorkin, J.; Derzhi, N.; Diaz, E.; Fang, Q. Relevance of computational rock physics. Geophysics 2011, 76, E141–E153. [Google Scholar] [CrossRef]
- Sell, K.; Saenger, E.; Falenty, A.; Chaouachi, M.; Haberthür, D.; Enzmann, F.; Kuhs, W.; Kersten, M. On the path to the digital rock physics of gas hydrate-bearing sediments—Processing of in situ synchrotron-tomography data. Solid Earth 2016, 7, 1243–1258. [Google Scholar] [CrossRef]
- Saxena, N. Exact results for generalized Biot-Gassmann equations for rocks that change in pore shape and grain geometry. Geophys. J. Int. 2015, 203, 1575–1586. [Google Scholar] [CrossRef]
- Roberts, A.; Garboczi, E. Computation of the linear elastic properties of random porous materials with a wide variety of microstructure. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 2002, 458, 1033–1054. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Paiboon, J.; Huang, J.; Fenton, G.A. Homogenization of geomaterials using the random finite element method. Geotech. Saf. Risk IV 2014, 43–51. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, B.; Yuen, D.A.; Shi, Y. Submicron size-scale mapping of carbonate effective elastic properties from FIB-SEM images and finite element method. Sci. China Earth Sci. 2016, 60, 557–575. [Google Scholar] [CrossRef]
- Saenger, E.H. Numerical methods to determine effective elastic properties. Int. J. Eng. Sci. 2008, 46, 598–605. [Google Scholar] [CrossRef]
- Dvorkin, J.; Nur, A. Scale of experiment and rock physics trends. Lead. Edge 2009, 28, 110–115. [Google Scholar] [CrossRef]
- Han, Y.; Hu, D.; Matzar, L. Numerical computation of elastic properties for porous rocks based on CT-scanned images using direct mapping method. J. Pet. Sci. Eng. 2014, 122, 346–353. [Google Scholar] [CrossRef]
- Saenger, E.H.; Vialle, S.; Lebedev, M.; Uribe, D.; Osorno, M.; Duda, M.; Steeb, H. Digital carbonate rock physics. Solid Earth 2016, 7, 1185–1197. [Google Scholar] [CrossRef]
- Shulakova, V.; Sarout, J.; Pimienta, L.; Lebedev, M.; Mayo, S.; Clennell, M.; Pervukhina, M. Effect of supercritical CO2 on carbonates: Savonnières sample case study. Geophys. Prospect. 2017, 65, 251–265. [Google Scholar] [CrossRef]
- Goodarzi, M.; Rouainia, M.; Aplin, A.C. Numerical evaluation of mean-field homogenisation methods for predicting shale elastic response. Comput. Geosci. 2016, 20, 1109–1122. [Google Scholar] [CrossRef]
- Saxena, N.; Hofmann, R.; Alpak, F.O.; Dietderich, J.; Hunter, S.; Day-Stirrat, R.J. Effect of image segmentation & voxel size on micro-CT computed effective transport & elastic properties. Mar. Pet. Geol. 2017, 86, 972–990. [Google Scholar] [CrossRef]
- Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; et al. Digital rock physics benchmarks-part II: Computing effective properties. Comput. Geosci. 2013, 50, 33–43. [Google Scholar] [CrossRef]
- Madonna, C.; Almqvist, B.S.G.; Saenger, E.H. Digital rock physics: Numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophys. J. Int. 2012, 189, 1475–1482. [Google Scholar] [CrossRef]
- Shulakova, V.; Pervukhina, M.; Tobias, M.M.; Lebedev, M.; Mayo, S.; Schmid, S.; Golodoniuc, P.; De Paula, O.B.; Clennell, M.B.; Gurevich, B. Computational elastic up-scaling of sandstone on the basis of X-ray micro-tomographic images. Geophys. Prospect. 2013, 61, 287–301. [Google Scholar] [CrossRef]
- Mahabadi, O.K.; Randall, N.X.; Zong, Z.; Grasselli, G. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophys. Res. Lett. 2012, 39, L01303. [Google Scholar] [CrossRef]
- Saenger, E.H.; Lebedev, M.; Uribe, D.; Osorno, M.; Vialle, S.; Duda, M.; Iglauer, S.; Steeb, H. Analysis of high-resolution X-ray computed tomography images of Bentheim sandstone under elevated confining pressures. Geophys. Prospect. 2016, 64, 848–859. [Google Scholar] [CrossRef]
- Han, D. Effects of Porosity and Clay Content on Acoustic Properties of Sandstones and Uncosolidated Sediments. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1986. [Google Scholar]
- Klein, E.; Reuschlé, T. A model for the mechanical behaviour of Bentheim sandstone in the brittle regime. Pure Appl. geophys. 2003, 160, 833–849. [Google Scholar] [CrossRef]
- Gomez, C.; Dvorkin, D.; Vanorio, T. Laboratory measurements of porosity, permeability, resistivity, and velocity on Fontainebleau sandstones. Geophysics 2010, 75, E191–E204. [Google Scholar] [CrossRef]
- David, E.C.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Zimmerman, R.W. Laboratory measurements of low- and high-frequency elastic moduli in Fontainebleau sandstone. Geophysics 2013, 78, D369–D379. [Google Scholar] [CrossRef]
- Bourbie, T.; Zinszner, B. Hydraulic and acoustic properties as a function of porosity in Fontainebleau Sandstone. J. Geophys. Res. Solid Earth 1985, 90, 11524–11532. [Google Scholar] [CrossRef]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Alhashmi, Z.; Blunt, M.J.; Bijeljic, B. The Impact of Pore Structure Heterogeneity, Transport, and Reaction Conditions on Fluid–Fluid Reaction Rate Studied on Images of Pore Space. Transp. Porous Media 2016, 115, 215–237. [Google Scholar] [CrossRef]
- Electricité de France. Finite Element Code_Aster, Analysis of Structures and Thermomechanics for Studies and Research. 2017. Available online: www.code-aster.org (accessed on 30 March 2018).
- Huang, J.; Krabbenhoft, K.; Lyamin, A. Statistical homogenization of elastic properties of cement paste based on X-ray microtomography images. Int. J. Solids Struct. 2013, 50, 699–709. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kang, Y.; Lee, Y.C.; Park, Y.; Lee, W. Influence of partially debonded interface on elasticity of syntactic foam: A numerical study. Materials 2017, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Faatz, M.; Cheng, W.; Wegner, G.; Fytas, G.; Penciu, R.S.; Economou, E. Mechanical strength of amorphous CaCO3 colloidal spheres. Langmuir 2005, 21, 6666–6668. [Google Scholar] [CrossRef] [PubMed]
- Wojtacki, K.; Lewandowska, J.; Gouze, P.; Lipkowski, A. Numerical computations of rock dissolution and geomechanical effects for CO2 geological storage. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 482–506. [Google Scholar] [CrossRef] [Green Version]
- Łydzba, D.; Rózański, A.; Rajczakowska, M.; Stefaniuk, D. Random checkerboard based homogenization for estimating effective thermal conductivity of fully saturated soils. J. Rock Mech. Geotech. Eng. 2016, 9, 18–28. [Google Scholar] [CrossRef]
- Garboczi, E. Finite Element and Finite Difference Programs for Computing the Linear Electric and Linear Elastic Properties of Digital Images of Random Materials; Internal Report 6269; National Institute of Standards and Technology-NIST: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Faisal, T.; Awedalkarim, A.; Chevalier, S.; Jouini, M.; Sassi, M. Direct scale comparison of numerical linear elastic moduli with acoustic experiments for carbonate rock X-ray CT scanned at multi-resolutions. J. Pet. Sci. Eng. 2017, 152, 653–663. [Google Scholar] [CrossRef]
- Wojtacki, K.; Daridon, L.; Monerie, Y. Computing the elastic properties of sandstone submitted to progressive dissolution. Int. J. Rock Mech. Min. Sci. 2017, 95, 16–25. [Google Scholar] [CrossRef]
- Knackstedt, M.; Latham, S.; Madadi, M.; Sheppard, A.; Varslot, T. Digital rock physics: 3D imaging of core material and correlations to acoustic and flow properties. Lead. Edge 2009, 28, 28–33. [Google Scholar] [CrossRef]
- Menke, H.; Bijeljic, B.; Andrew, M.; Blunt, M. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. Environ. Sci. Technol. 2015, 49, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, M.; Zhang, Y.; Sarmadivaleh, M.; Barifcani, A.; Al-Khdheeawi, E.; Iglauer, S. Carbon geosequestration in limestone: Pore-scale dissolution and geomechanical weakening. Int. J. Greenh. Gas Control 2017, 66, 106–119. [Google Scholar] [CrossRef]
- Luquot, L.; Hebert, V.; Rodriguez, O. Calculating structural and geometrical parameters by laboratory measurements and X-ray microtomography: A comparative study applied to a limestone sample before and after a dissolution experiment. Solid Earth 2016, 7, 441–456. [Google Scholar] [CrossRef]
- Vanorio, T.; Nur, A.; Ebert, Y. Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks. Geophysics 2011, 76, O23–O33. [Google Scholar] [CrossRef]
- Benveniste, Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987, 6, 147–157. [Google Scholar] [CrossRef]
- Weng, G.J. A dynamical theory for the Mori-Tanaka and Ponte Castañeda-Willis estimates. Mech. Mater. 2010, 42, 886–893. [Google Scholar] [CrossRef]
- Mura, T. Micromechanics of Defects in Solids; Martinus Nijhoff Publishers: Dordrecht, The Netherlands, 1987. [Google Scholar]
Mineral | K (GPa) | G (GPa) | Reference |
---|---|---|---|
Quartz | 37.0 | 44.0 | [27] |
Calcite | 74.8 | 30.6 | [27] |
Calcite (amorphous) | 35.5 | 14.0 | [74] |
Pore space * | 1 × 10 | 3 × 10 |
Digital Sample | Modulus of Elasticity | Mean Value (GPa) | Mean Directional Difference (GPa)* | r2 (Mean Value) | r2 (Three Spatial Directions) |
---|---|---|---|---|---|
Fontainebleau | K | 24.8 | 4.7 | 0.90 | 0.68 |
G | 26.1 | 4.6 | 0.94 | 0.78 | |
Bentheim | K | 20.4 | 9.3 | 0.84 | 0.65 |
G | 19.6 | 9.5 | 0.93 | 0.79 |
Digital Sample | Porosity (%) | Effective Elastic Property | Mean Directional Difference | ||
---|---|---|---|---|---|
K (GPa) | G (GPa) | K (GPa) | G (GPa) | ||
Fontainebleau | 13.9 | 25.8 | 27.3 | 3.0 | 3.9 |
14.6 | 24.8 | 26.2 | 1.6 | 2.9 | |
15.6 | 23.8 | 25.0 | 4.6 | 3.6 | |
Bentheim | 19.4 | 22.4 | 21.4 | 2.7 | 7.0 |
21.8 | 20.7 | 18.7 | 5.3 | 4.0 | |
24.5 | 18.2 | 16.9 | 2.9 | 5.0 |
Digital Sample | Spatial Cement Distribution | 10% Calcite Cement by Volume | 5% Calcite Cement by Volume | ||||||
---|---|---|---|---|---|---|---|---|---|
Stiff Cement | Soft Cement | Stiff Cement | Soft Cement | ||||||
K (%) | G (%) | K (%) | G (%) | K (%) | G (%) | K (%) | G (%) | ||
Fontainebleau | Random | 32.9 | 32.8 | 25.5 | 25.6 | 21.9 | 19.1 | 18.2 | 15.6 |
Partially filled | 30.5 | 28.0 | 24.6 | 22.1 | 19.0 | 17.0 | 15.2 | 13.4 | |
Coating | 29.3 | 29.1 | 22.2 | 22.5 | 18.5 | 17.3 | 14.6 | 13.8 | |
Bentheim | Random | 34.2 | 38.4 | 24.3 | 29.1 | 23.2 | 22.9 | 18.4 | 18.1 |
Partially filled | 33.6 | 28.7 | 27.1 | 22.0 | 17.4 | 15.8 | 14.0 | 12.6 | |
Coating | 30.2 | 30.3 | 21.9 | 22.4 | 16.2 | 16.8 | 12.2 | 13.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetzel, M.; Kempka, T.; Kühn, M. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations. Materials 2018, 11, 542. https://doi.org/10.3390/ma11040542
Wetzel M, Kempka T, Kühn M. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations. Materials. 2018; 11(4):542. https://doi.org/10.3390/ma11040542
Chicago/Turabian StyleWetzel, Maria, Thomas Kempka, and Michael Kühn. 2018. "Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations" Materials 11, no. 4: 542. https://doi.org/10.3390/ma11040542
APA StyleWetzel, M., Kempka, T., & Kühn, M. (2018). Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations. Materials, 11(4), 542. https://doi.org/10.3390/ma11040542